Math, asked by Eshal8699, 10 months ago

Simplify √2/(√6-√2)-√3/(√6+√2)

Answers

Answered by sonijagdishjs
16

Step-by-step explanation:

on taking lcm u can solve it

Attachments:
Answered by rinayjainsl
3

Answer:

The simplification of the above expression is

 \frac{ \sqrt{2} }{ \sqrt{6}  -  \sqrt{2} }  -  \frac{ \sqrt{3} }{ \sqrt{6}  +  \sqrt{2} }  = \frac{2 \sqrt{3}  + 2  + 3 \sqrt{2}  -  \sqrt{6} }{4}

Step-by-step explanation:

The given expression in irrational terms is mentioned as below

 \frac{ \sqrt{2} }{ \sqrt{6}  -  \sqrt{2} }  -  \frac{ \sqrt{3} }{ \sqrt{6}  +  \sqrt{2} }

As we can observe the denominators as a sum of two irrational numbers.To convert them into a proper number we shall Rationalize them.

A number can be rationalised in the following way by multiplying amd dividing it with its Rational Factor.

 \frac{1}{ \sqrt{a} +  \sqrt{b}  }  =\frac{1}{ \sqrt{a} +  \sqrt{b} }    \times  \frac{ \sqrt{a} -  \sqrt{b}  }{ \sqrt{a} -  \sqrt{b}  }  \\  =  \frac{ \sqrt{a} -  \sqrt{b}  }{a - b}

Doing the rationalization for the given expression as follows,we get

 \frac{ \sqrt{2} }{ \sqrt{6} -  \sqrt{2}  }   \times  \frac{ \sqrt{6} +  \sqrt{2}  }{ \sqrt{6} +  \sqrt{2}  }  \\  =  \frac{ \sqrt{2} ( \sqrt{6}  +  \sqrt{2}) }{ { \sqrt{6} }^{2} -  { \sqrt{2} }^{2}  }  =  \frac{ \sqrt{12}  + 2}{4} \\   =  \frac{2( \sqrt{3}  + 1)}{4}

Similarly,doing it for the second term we get

 \frac{ \sqrt{3} }{ \sqrt{6}  +  \sqrt{2} }  \times  \frac{ \sqrt{6}  -  \sqrt{2} }{ \sqrt{6}  -  \sqrt{2} }  \\  =  \frac{ \sqrt{3} ( \sqrt{6}  -  \sqrt{2} )}{4}  \\  =  \frac{ \sqrt{18} -  \sqrt{6}  }{4}

Adding both the terms we get

 \frac{2 \sqrt{3} + 2 }{4}  +  \frac{ \sqrt{18}  -  \sqrt{6} }{4}  \\  =  \frac{2 \sqrt{3}  + 2  + 3 \sqrt{2}  -  \sqrt{6} }{4}

Hence,the simpification of the above expression is found as

 \frac{ \sqrt{2} }{ \sqrt{6}  -  \sqrt{2} }  -  \frac{ \sqrt{3} }{ \sqrt{6}  +  \sqrt{2} }  = \frac{2 \sqrt{3}  + 2  + 3 \sqrt{2}  -  \sqrt{6} }{4}

#SPJ2

Similar questions