Math, asked by devideepa3337, 1 month ago

Simplify 2-√7 / √5+√3​

Answers

Answered by GeniusAnswer
8

\large\bf\underline\red{Answer \:  :-}

This type of example we solve by Rationalizing also we know Rationalize the denominator’.

\sf:\implies{ \frac{2 -  \sqrt{7} }{ \sqrt{5}  + 3}  \times   \frac{ \sqrt{5}  - 3}{ \sqrt{5} - 3 }  } \\  \\ \sf:\implies{ \frac{(2 -  \sqrt{7} )( \sqrt{5}  - 3)}{( \sqrt{5} + 3)( \sqrt{5}  - 3) } } \\  \\ \sf:\implies{  \frac{2(\sqrt{5}  - 3) -  \sqrt{7} ( \sqrt{5} - 3)}{( \sqrt{5}) {}^{2}  - (3) {}^{2}  }  } \\  \\  \sf:\implies{ \frac{2 \sqrt{5}  - 6 -  \sqrt{35}  - 3 \sqrt{7} }{5 - 9} } \\  \\ \sf:\implies{ \frac{2 \sqrt{5} - 6 -  \sqrt{35}   - 3 \sqrt{7}  \times ( -  \sqrt{35}) }{ - 4 \times ( -  \sqrt{35} )}  \:  \:  \: (  \: \because \:multiply \: by \:  -  \sqrt{35} ) } \\  \\ \sf:\implies{   \boxed{ \red{\frac{2 \sqrt{5} - 41 - 3 \sqrt{7}  }{4 \sqrt{35} }  }}}

_______________________________

Similar questions