Math, asked by rayyan349, 1 year ago

simplify 2 cube root + 16 cube root - 54 cube root​

Attachments:

Answers

Answered by basavaraj5392
13

Step-by-step explanation:

 =  \sqrt[3]{2}  +  \sqrt[3]{16}  -  \sqrt[3]{54}  \\  =  \sqrt[3]{2}  +  \sqrt[3]{ {2}^{3} \times 2 }  -  \sqrt[3]{ {3}^{3} \times 2 }  \\  =  \sqrt[3]{2}  + 2 \sqrt[3]{2}   - 3 \sqrt[3]{2}  \\ =  \sqrt[3]{2} (1 + 2 - 3) \\  =  \sqrt[3]{2} (0) \\  = 0

Answered by pinquancaro
5

\sqrt[3]{2}+\sqrt[3]{16}-\sqrt[3]{54}=0

Step-by-step explanation:

Given : Expression \sqrt[3]{2}  +  \sqrt[3]{16}  -  \sqrt[3]{54}

To find : Simplify the expression ?

Solution :

Expression \sqrt[3]{2}  +  \sqrt[3]{16}  -  \sqrt[3]{54}

Write the numbers in factor form,

\sqrt[3]{2} + \sqrt[3]{16}-\sqrt[3]{54}= \sqrt[3]{2} +\sqrt[3]{ {2}^{3} \times 2 }-\sqrt[3]{ {3}^{3} \times 2}

\sqrt[3]{2}+\sqrt[3]{16}-\sqrt[3]{54}=\sqrt[3]{2} + 2 \sqrt[3]{2} - 3 \sqrt[3]{2}

\sqrt[3]{2}+\sqrt[3]{16}-\sqrt[3]{54}= \sqrt[3]{2} (1 + 2 - 3)

\sqrt[3]{2}+\sqrt[3]{16}-\sqrt[3]{54}= \sqrt[3]{2} (0)

\sqrt[3]{2}+\sqrt[3]{16}-\sqrt[3]{54}=0

#Learn more

Simplify : 2 cube root 40 + 3 Cube root 625 - 4 cube root 320​

https://brainly.in/question/10916674

Similar questions