Math, asked by opponent, 1 year ago

Simplify : 2 ^n + 2 ^n-1 ÷ 2^n+1 - 2^n.

Answers

Answered by lucky2004
209

(2^n+2^n-1)/(2^n+1-2^n)

Take 2^n common

∴ 2^n(1+2^-1)/2^n(2-1)

=> (1+2^-1)/1

= 1+2^-1

=1+1/2

=3/2

Answered by hukam0685
16

 \bf \red{\frac{ {2}^{n} +  {2}^{n - 1}  }{ {2}^{n + 1} -  {2}^{n}  } =  \frac{3}{2}}   \\

Given:

  •  \frac{ {2}^{n} +  {2}^{n - 1}  }{ {2}^{n + 1} -  {2}^{n}  }  \\

To find:

  • Simplify.

Solution:

Concept to be used:

  1. \bf {a}^{-n}  =  \frac{1}{a^{n} }\\
  2. \bf {a}^{(n+m)}  = {a}^{n} {a}^{m}\\

Step 1:

Rewrite the expression.

 \frac{ {2}^{n} +  {2}^{n}  {2}^{ - 1}  }{ {2}^{n } {2}^{1}  -  {2}^{n}  }  \\

or

Take common

=\frac{ {2}^{n}  (1 +  {2}^{ - 1})  }{ {2}^{n }( {2}^{1}  -  1) }  \\

or

 = \frac{  (1 +  {2}^{ - 1})  }{ ( {2}^{1}  -  1) }  \\

Step 2:

Simplify the mathematical expression.

 =  \frac{1 +  \frac{1}{2} }{2 - 1}  \\

or

 = 1 +  \frac{1}{2}  \\

or

 =  \frac{3}{2}  \\

Thus,

\bf \frac{ {2}^{n} +  {2}^{n - 1}  }{ {2}^{n + 1} -  {2}^{n}  } =  \frac{3}{2}   \\

Learn more:

1) if 2^x-1+2^x+1 = 320 then x = ?

https://brainly.in/question/5852977

2) in power notation 243/32 can be expressed as

https://brainly.in/question/23672039

Similar questions