Math, asked by avyrockstar07, 8 months ago

simplify (2^n+3- 2*2^n)/2^n+3 step by step

Answers

Answered by mysticd
1

 Given \: \frac{(2^{n+3} - 2\times 2^{n})}{2^{n+3}}

 = \frac{(2^{n} \times 2^{3}  - 2\times 2^{n})}{2^{n} \times 2^{3}}

 = \frac{ \cancel {2^{n}} ( 2^{3} - 2 )}{\cancel { 2^{n} }\times 2^{3}}

 = \frac{(8 - 2 )}{8}

 = \frac{6}{8}

 = \frac{3}{4}

Therefore.,

 \red{\frac{(2^{n+3} - 2\times 2^{n})}{2^{n+3}}}

 \green { = \frac{3}{4}}

•••♪

Answered by Anonymous
4

\bf{\underline{\underline{\bigstar\bigstar\: Equation : }}}\\

\:

  • \footnotesize{ \dfrac{2^n+3 - 2 \times 2^n}{2^{n+3}}}\\

\:

\bf{\underline{\underline{\bigstar\bigstar\: Formula \: used : }}}\\

\:

  • \footnotesize{ {a}^{m} \times {a}^{n} = {a}^{m + n}  }\\

  • \footnotesize{ab + ac = a( b + c)}\\

\:

\bf{\underline{\underline{\bigstar\bigstar\: Solution : }}}\\

\:

\footnotesize{ \dfrac{2^{n+3} - 2 \times 2^n}{2^{n+3}}}\\

\footnotesize{= \dfrac{2^n \times 2^3 - 2 \times 2^n}{2^n \times 2^3}}\\

\footnotesize{= \dfrac{2^n ( 2^3 - 2)}{2^n \times 2^3}}\\

\footnotesize{= \dfrac{ 8 - 2}{ 8}}\\

\footnotesize{= \dfrac{ 6}{ 8}}\\

\footnotesize{= \dfrac{3}{4}}\\

\:

\bold{Answer = \dfrac{3}{4}}\\

Similar questions