Math, asked by siddhantthemep7xxc4, 1 year ago

simplify 2 + root 3 / 2 minus root 3 + 2 minus root 3 / 2 + root 3 + root3 - 1 / root 3 + 1

Answers

Answered by DaIncredible
124
Hey friend,
Here is the answer you were looking for:
 \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  +  \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }  +  \frac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 }  \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\  =  \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }  +  \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  +  \frac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1}  \times  \frac{ \sqrt{3} - 1 }{ \sqrt{3}  - 1}  \\  \\ using \: the \: identity \\  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\  {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ {(2)}^{2} +  {( \sqrt{3}) }^{2}   + 2(2)( \sqrt{3} )}{ {(2)}^{2}  -  {( \sqrt{3} })^{2} }  + \frac{ {(2)}^{2} +  {( \sqrt{3}) }^{2}    -  2(2)( \sqrt{3} )}{ {(2)}^{2}  -  {( \sqrt{3} })^{2} }  +  \frac{ {( \sqrt{3} )}^{2} +  {(1)}^{2}  - 2( \sqrt{3})(1)  }{ {( \sqrt{3}) }^{2} -  {(1)}^{2}  }  \\  \\  =  \frac{4 + 3 + 4 \sqrt{3} }{4 - 3}  + \frac{4 + 3  -  4 \sqrt{3} }{4 - 3}  +  \frac{3  + 1 - 2 \sqrt{3} }{3 - 1}  \\  \\  = 7 + 4 \sqrt{3}  + 7 - 4 \sqrt{3}  +  \frac{4 - 2 \sqrt{3} }{2}  \\  \\  = 7 + 7 + 2 -  \sqrt{3}  \\  \\  = 16 -  \sqrt{3}

Hope this helps!!!

If you have any doubts regarding to my answer, feel free to ask in comment section or inbox me.

@Mahak24

Thanks...
☺☺
Answered by aliasingkm1995
25

Answer:

Step-by-step explanation: Hope it will help u guys

Attachments:
Similar questions