Math, asked by chore, 1 year ago

simplify : 2 root 50 × 3 root 32 × 4 root 18

Answers

Answered by reenananhki
39

Answer:

2800√2

Step-by-step explanation:

Answered by pinquancaro
79

Answer:

2\sqrt{50} + 3\times \sqrt{32} + 4\times \sqrt{18}=34\sqrt{2}

Step-by-step explanation:

Given : 2 root 50 × 3 root 32 × 4 root 18

To find : Simplify the expression ?

Solution :

First we write the expression in numbers,

2\sqrt{50} + 3\times \sqrt{32} + 4\times \sqrt{18}

Now, we solve the expression

=2\sqrt{25\times 2}+3\sqrt{16\times 2}+4\sqrt{9\times 2}

=2\times \sqrt{25}\times \sqrt{2}+3\times \sqrt{16}\times \sqrt{2}+2\times \sqrt{9}\times \sqrt{2}

Applying, \sqrt{(a\times b)}=\sqrt a\times \sqrt b

=2\times 5\times \sqrt{2}+3\times 4\times \sqrt{2}+4\times 3\times \sqrt{2}

=10\sqrt{2}+12\sqrt{2}+12\sqrt{2}

=34\sqrt{2}

Therefore, 2\sqrt{50} + 3\times \sqrt{32} + 4\times \sqrt{18}=34\sqrt{2}

Similar questions