Math, asked by bbn2, 1 year ago

Simplify (243/32)^-4/5

Answers

Answered by siddhartharao77
234
Given, (243/32)^-4/5 

= (3^5/2^5)^-4/5 

= (3/2)^-4 

= 16/81
Answered by hukam0685
7

 \bf \red{\left({ \frac{243}{32} } \right)^{ -  \frac{4}{5} }  =  \frac{16}{81}  }\\

Step-by-step explanation:

Given:

  •   \left({ \frac{243}{32} } \right)^{ -  \frac{4}{5} }  \\

To find:

  • Simply the expression.

Solution:

Identify to be used:

  1.  \left({ \frac{a}{b} } \right)^{ -  \frac{m}{n} }  = \left({ \frac{b}{a} } \right)^{  \frac{m}{n} } \\
  2. (  { {a}^{m} })^{ \frac{1}{m} }  = a \\

Step 1:

Write 243 and 32 in powers of 3 and 2 respectively.

243 =  {3}^{5}  \\

and

32 =  {2}^{5}  \\

So,

\left({ \frac{243}{32} } \right)^{ -  \frac{4}{5} } = \left({ \frac{32}{243} } \right)^{\frac{4}{5} }  \\

or

 \left({ \frac{32}{243} } \right)^{\frac{4}{5} }  =  \left({ \frac{ {(2)}^{5} }{ {(3)}^{5} } } \right)^{\frac{4}{5} }  \\

or

Apply Identity 2.

\left({ \frac{ {(2)}^{5} }{ {(3)}^{5} } } \right)^{\frac{4}{5} }   =\left({ \frac{ {(2)}^{5 \times  \frac{1}{5} }  }{ {(3)}^{5 \times  \frac{1}{5} } } } \right)^{4}  \\

or

\left({ \frac{ {(2)}^{5 \times  \frac{1}{5} }  }{ {(3)}^{5 \times  \frac{1}{5} } } } \right)^{4}   =  \left({ \frac{2}{3} } \right)^{4}  \\

Step 2:

Simply the last expression.

\left({ \frac{2}{3} } \right)^{4}  =  \frac{ {2}^{4} }{ {3}^{4} }  \\

or

\frac{ {2}^{4} }{ {3}^{4} }  =  \frac{16}{81}  \\

Thus,

\bf  \left({ \frac{243}{32} } \right)^{ -  \frac{4}{5} }  =  \frac{16}{81}  \\

Learn more:

1) simplify 12⁴×9³×4/6³×8²×27

https://brainly.in/question/2797724

2) evaluate (343/1331)1/3

https://brainly.in/question/10672485

#SPJ3

Similar questions