Math, asked by vipulkumar6851, 11 months ago

simplify (25)^3/2 * (243)^3/5 ÷(625)^1/2 (16)^5/4 * (8)^4/3

Answers

Answered by AbhijithPrakash
6

Answer:

25^{\dfrac{3}{2}}\cdot \dfrac{243^{\dfrac{3}{5}}}{625^{\dfrac{1}{2}}}\cdot \:16^{\dfrac{5}{4}}\cdot \:8^{\dfrac{4}{3}}=69120

Step-by-step explanation:

25^{\dfrac{3}{2}}\cdot \dfrac{243^{\dfrac{3}{5}}}{625^{\dfrac{1}{2}}}\cdot \:16^{\dfrac{5}{4}}\cdot \:8^{\dfrac{4}{3}}

\rule{300}{1}

\mathrm{Factor\:integer\:}16=2^4

=25^{\dfrac{3}{2}}\cdot \dfrac{243^{\dfrac{3}{5}}}{625^{\dfrac{1}{2}}}\left(2^4\right)^{\dfrac{5}{4}}\cdot \:8^{\dfrac{4}{3}}

\rule{300}{1}

\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}

\left(2^4\right)^{\dfrac{5}{4}}=2^{4\cdot \dfrac{5}{4}}

=25^{\dfrac{3}{2}}\cdot \dfrac{243^{\dfrac{3}{5}}}{625^{\dfrac{1}{2}}}\cdot \:2^{4\cdot \dfrac{5}{4}}\cdot \:8^{\dfrac{4}{3}}

\rule{300}{1}

\mathrm{Refine}

=25^{\dfrac{3}{2}}\cdot \dfrac{243^{\dfrac{3}{5}}}{625^{\dfrac{1}{2}}}\cdot \:2^5\cdot \:8^{\dfrac{4}{3}}

\rule{300}{1}

\mathrm{Factor\:integer\:}8=2^3

=25^{\dfrac{3}{2}}\cdot \dfrac{243^{\dfrac{3}{5}}}{625^{\dfrac{1}{2}}}\cdot \:2^5\left(2^3\right)^{\dfrac{4}{3}}

\rule{300}{1}

\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}

\left(2^3\right)^{\dfrac{4}{3}}=2^{3\cdot \dfrac{4}{3}}

=25^{\dfrac{3}{2}}\cdot \dfrac{243^{\dfrac{3}{5}}}{625^{\dfrac{1}{2}}}\cdot \:2^5\cdot \:2^{3\cdot \dfrac{4}{3}}

\rule{300}{1}

\mathrm{Refine}

=25^{\dfrac{3}{2}}\cdot \dfrac{243^{\dfrac{3}{5}}}{625^{\dfrac{1}{2}}}\cdot \:2^5\cdot \:2^4

\rule{300}{1}

\mathrm{Apply\:exponent\:rule}:\quad \:a^b\cdot \:a^c=a^{b+c}

2^5\cdot \:2^4=\:2^{5+4}

=25^{\dfrac{3}{2}}\cdot \dfrac{243^{\dfrac{3}{5}}}{625^{\dfrac{1}{2}}}\cdot \:2^{5+4}

\rule{300}{1}

\mathrm{Add\:the\:numbers:}\:5+4=9

=25^{\dfrac{3}{2}}\cdot \dfrac{243^{\dfrac{3}{5}}}{625^{\dfrac{1}{2}}}\cdot \:2^9

\rule{300}{1}

25^{\dfrac{3}{2}}

\rule{300}{0.5}

\mathrm{Factor\:the\:number:\:}\:25=5^2

=\left(5^2\right)^{\dfrac{3}{2}}

\rule{300}{0.3}

\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}

\left(5^2\right)^{\dfrac{3}{2}}=5^{2\cdot \dfrac{3}{2}}=5^3

=5^3

\rule{300}{0.3}

\mathrm{Refine}

=125

\rule{300}{1}

=2^9\cdot \:125\cdot \dfrac{243^{\dfrac{3}{5}}}{625^{\dfrac{1}{2}}}

\rule{300}{1}

\dfrac{243^{\dfrac{3}{5}}}{625^{\dfrac{1}{2}}}

\rule{300}{0.3}

625^{\dfrac{1}{2}}=25

243^{\dfrac{3}{5}}=27

\rule{300}{0.3}

=\dfrac{27}{25}

\rule{300}{1}

=2^9\cdot \:125\cdot \dfrac{27}{25}

\rule{300}{1}

\mathrm{Multiply\:fractions}:\quad \:a\cdot \dfrac{b}{c}=\dfrac{a\:\cdot \:b}{c}

=\dfrac{27\cdot \:125\cdot \:2^9}{25}

\rule{300}{1}

\mathrm{Multiply\:the\:numbers:}\:27\cdot \:125=3375

=\dfrac{2^9\cdot \:3375}{25}

\rule{300}{1}

\mathrm{Divide\:the\:numbers:}\:\dfrac{3375}{25}=135

=2^9\cdot \:135

\rule{300}{1}

2^9=512

=512\cdot \:135

\rule{300}{1}

\mathrm{Multiply\:the\:numbers:}\:512\cdot \:135=69120

=69120

Similar questions