Math, asked by singhshivamsingh829, 10 months ago

simplify (27)6/5_(27)1/5​

Answers

Answered by amankumaraman11
20

27 \frac{6}{5}  - 27 \frac{1}{5}  \\  \\ 27( \frac{6}{5}  -  \frac{1}{5} ) \\  \\ 27( \frac{6 - 1}{5} ) \\  \\ 27 \frac{5}{5}  = 27 \times 1 = 27

Answered by jitumahi435
7

Given:

(27)^{\dfrac{6}{5} }- (27)^{\dfrac{1}{5} }

We have to find, the value of (27)^{\dfrac{6}{5} }- (27)^{\dfrac{1}{5} } is:

Solution:

(27)^{\dfrac{6}{5} }- (27)^{\dfrac{1}{5} }

27 = 3 × 3 × 3 = 3^{2}

=(3^3)^{\dfrac{6}{5} }- (3^3)^{\dfrac{1}{5} }

Using the exponential identity:

(a^m)^{n} = a^{mn}

=(3)^{3\times \dfrac{6}{5} }- (3)^{3\times \dfrac{1}{5} }

Taking common as 3^{\dfrac{3}{5} }, we get

= 3^{\dfrac{3}{5} }(3^6-1)

= 3^{\dfrac{3}{5} }(729-1)

= 728· 3^{\dfrac{3}{5} }

(27)^{\dfrac{6}{5} }- (27)^{\dfrac{1}{5} } = 3^{\dfrac{3}{5} }(3^6-1) or, 728· 3^{\dfrac{3}{5} }

Thus, the value of (27)^{\dfrac{6}{5} }- (27)^{\dfrac{1}{5} } is equal to "3^{\dfrac{3}{5} }(3^6-1) or, 728· 3^{\dfrac{3}{5} }"

Similar questions