simplify:-
27x³yz-³/3x(y×z)³
Answers
Answered by
2
Answer:
We will use the algebraic identity: x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - zx)
The given expression 27x³ + y³ + z³ - 9xyz can be written as (3x)³ +(y)³ +(z)³ - 3(3x)(y)(z)
By using the identity x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - zx)
We can write: (3x)³ + (y)³ + (z)² - 3(3x)(y)(z) = (3x + y + z)[(3x)² + ( y)² + (z)² - (3x)( y) - yz - (z)(3x)]
Hence, 27x³ + y³ + z³ - 9xyz = (3x + y + z)(9x² + y² + z² - 3xy - yz - 3zx)
Similar questions