Math, asked by akshara2748, 1 day ago

simplify: (2a+3b)³-(2a-3b)³​

Answers

Answered by princesharmq
1

Step-by-step explanation:

mark me as a BRAINELIST plz

Attachments:
Answered by Anonymous
0

Answer:

18b(4a^2 + 3b^2)

Step-by-step explanation:

Given Expression:

(2a+3b)³-(2a-3b)³​

The expression is in the form a^3 - b^3, where

a = (2a + 3b)

b = (2a - 3b)

We know from the various identity formulae that

a^3 - b^3 = (a - b)(a^2 + ab + b^2)

Simplifying the given expression,

(2a+3b)³-(2a-3b)³​

[(2a + 3b) - (2a - 3b][(2a + 3b)^2 + (2a + 3b)(2a - 3b) + (2a - 3b)^2]

[2a + 3b - 2a + 3b][(2a + 3b)^2 + (2a + 3b)(2a - 3b) + (2a - 3b)^2]

From the identity formulae, we also know that

  • (a + b)(a - b) = a^2 - b^2
  • (a + b)^2 = a^2 + b^2 + 2ab
  • (a - b)^2 = a^2 + b^2 - 2ab

We can use these to further simplify the given expression.

We will get

6b[(2a)^2 + (3b)^2 + 2(2a)(3b) + (2a)^2 - (3b)2^ + (2a)^2 + (3b)^2 - 2(2a)(3b)]

6b[4a^2 + 9b^2 + 12ab + 4a^2 - 9b^2  + 4a^2 + 9b^2 - 12ab]

6b[4a^2 + 4a^2 + 4a^2 + 9b^2]

6b(12a^2 + 9b^2)

From the expression in the bracket, take 3 common.

We will get

6b\times3(12a^2 + 9b^2)

18b(4a^2 + 3b^2)

Similar questions