Hindi, asked by sudhathakur592, 3 days ago

simplify:2a(4a-5)+5 and find value (1)a=0 (2)a=1.​

Answers

Answered by Khushibangotra
0

2a * (4a - 5) + 5

8a ^ 2 - 10a + 5

Given A=

0

1

2

1

2

3

3

x

1

1) Minors matrix of A is,

M

A

=

2−3x

1−9

x−6

1−2x

0−6

0−3

3−4

0−2

0−1

∴M

A

=

2−3x

−8

x−6

1−2x

−6

−3

−1

−2

−1

2) Cofactors matrix of A is,

C

A

=

2−3x

8

x−6

−(1−2x)

−6

3

−1

2

−1

∴C

A

=

2−3x

8

x−6

2x−1

−6

3

−1

2

−1

3) Adjoint of matrix is,

Adj[A]=

2−3x

2x−1

−1

8

−6

2

x−6

3

−1

4) Determinant of matrix A is,

∣A∣=

0

1

2

1

2

3

3

x

1

∴∣A∣=0[2−3x]−1[1−2x]+3[3−4]

∴∣A∣=−1[1−2x]+3[−1]

∴∣A∣=2x−1−3

∴∣A∣=2x−4

∴∣A∣=2(x−2)

Thus, inverse of a matrix A is,

[A]

−1

=

∣A∣

1

Adj.[A]

∴[A]

−1

=

2(x−2)

1

2−3x

2x−1

−1

8

−6

2

x−6

3

−1

(1)

Given [A]

−1

=

2

1

2

1

2

1

−4

3

y

2

5

2

3

2

1

(2)

Comparing a

11

in equations (1) and (2), we get,

2(x−2)

2−3x

=

2

1

(x−2)

2−3x

=1

∴2−3x=(x−2)

∴4x=4

∴x=1

Comparing a

32

in equations (1) and (2), we get,

2(x−2)

2

=y

(1−2)

1

=y

−1

1

=y

∴y=−1

Similar questions