English, asked by Anonymous, 10 hours ago

Simplify — (2a + b)³ - (2a - b)³

Answers

Answered by ᏞovingHeart
61

Simplify — (2a + b)³ - (2a - b)³

_

❖ Using the formulas —

\dag \; \underline{\boxed{\sf{\purple{ (a + b) = a^3 + 3 a^2 b + 3 a b^2 + b^3 }}}}

\dag \; \underline{\boxed{\sf{\purple{ (a - b) = a^3 - 3 a^2 b + 3 a b^2 - b^3 }}}}

   

⬩ Consider:

\sf{\orange{ (2a + b)^2 =}}

\implies \sf{ (2a)^3 + 3 \times (2a)^2 \times b + 3 \times 2a \times (b)^2 + (b)^3 }

\implies \sf{ 8a^3 + 3 \times 4a^2 \times b + 3 \times 2a \times b^2 + b^3 }

\implies \underline{\underline{\sf{ \;  8a^3 + 12 a^2 b + 6 ab^2 + b^3 \; }}}

   

⬩ Similarly:

\underline{\underline{\sf{ \; (2ab - b)^3 = 8a^3 - 12a^2b + 6ab^2 +b^3 \; }}}

   

⬩ Consider:

\sf{(2a + b)^3 - (2a - b)^3}

\implies \sf{ (8a^3 + 12 a^2 b + 6ab^2 + b^3) - (8a^3 - 12a^2b + 6ab^2 - b^3 ) }

\implies \sf{ \cancel{8a^3} + 12 a^2 b + \canncel{6ab^2} + b^3 - \cancel{8a^3} + 12a^2b - \cancel{6ab^2} + b^3  }

\implies \sf{ 12 a^2 b +  b^3 + 12 a^2 b +b^3 }

\implies \underline{\underline{\sf{ \; 24a^2b + 2ab^3 \; }}}

__

* ⁺◦﹆◞˚ ꒰ More to know ꒱

   

Related Algebraic Identities :

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • (a + b) (a - b) = a² - b²
  • (a + b)³ = a³ + 3a²b + 3ab² + b³
  • (a - b)³ = a³ - 3a²b + 3ab² + b³
  • (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac
  • (x + a) (x + b) = x² + (a + b)x + ab
  • a³ + b³ = (a + b) (a² - ab + b²)
  • a³ - b³ = (a - b) (a² + ab + b²)

_____

Apologies for the mistakes <3

Answered by shouryapjpt
0

The answer is in the adjoining picture...

Attachments:
Similar questions