Math, asked by reenakharb85, 2 months ago

Simplify (2a2 + 5b2
)(a –b) + (a2 – b
2
)(3a + 4b)​

Answers

Answered by anupatil172
0

Answer:

Reformatting the input :

Changes made to your input should not affect the solution:

(1): "b2" was replaced by "b^2". 3 more similar replacement(s).

STEP

1

:

Equation at the end of step 1

b (b2)

(2a-(((5•———————)•2)•(a2)))-(2•———————————————————————)

(2a+2b) (((6•(a2))+ab)-(3•5b2))

STEP

2

:

Equation at the end of step

2

:

b (b2)

(2a-(((5•———————)•2)•(a2)))-(2•——————————————————————)

(2a+2b) (((2•3a2)+ab)-(3•5b2))

STEP

3

:

b2

Simplify ———————————————

6a2 + ab - 15b2

Trying to factor a multi variable polynomial :

3.1 Factoring 6a2 + ab - 15b2

Try to factor this multi-variable trinomial using trial and error

Found a factorization : (2a - 3b)•(3a + 5b)

Equation at the end of step

3

:

b b2

(2a-(((5•———————)•2)•(a2)))-(2•———————————————)

(2a+2b) (2a-3b)•(3a+5b)

STEP

4

:

Equation at the end of step 4

b 2b2

(2a-(((5•———————)•2)•(a2)))-———————————————

(2a+2b) (2a-3b)•(3a+5b)

STEP

5

:

b

Simplify ———————

2a + 2b

STEP

6

:

Pulling out like terms

6.1 Pull out like factors :

2a + 2b = 2 • (a + b)

Equation at the end of step

6

:

b 2b2

(2a-(((5•———————)•2)•a2))-———————————————

2•(a+b) (2a-3b)•(3a+5b)

STEP

7

:

Equation at the end of step 7

5b 2b2

(2a-((———————•2)•a2))-———————————————

2•(a+b) (2a-3b)•(3a+5b)

STEP

8

:

Equation at the end of step 8

5b 2b2

(2a - (————— • a2)) - —————————————————————

a + b (2a - 3b) • (3a + 5b)

STEP

9

:

Equation at the end of step 9

5a2b 2b2

(2a - —————) - —————————————————————

a + b (2a - 3b) • (3a + 5b)

STEP

10

:

Rewriting the whole as an Equivalent Fraction

10.1 Subtracting a fraction from a whole

Rewrite the whole as a fraction using (a+b) as the denominator :

2a 2a • (a + b)

2a = —— = ————————————

1 (a + b)

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

10.2 Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

2a • (a+b) - (5a2b) -5a2b + 2a2 + 2ab

——————————————————— = —————————————————

1 • (a+b) 1 • (a + b)

Equation at the end of step

10

:

(-5a2b + 2a2 + 2ab) 2b2

——————————————————— - —————————————————————

1 • (a + b) (2a - 3b) • (3a + 5b)

STEP

11

:

STEP

12

:

Pulling out like terms :

12.1 Pull out like factors :

-5a2b + 2a2 + 2ab = -a • (5ab - 2a - 2b)

Calculating the Least Common Multiple :

12.2 Find the Least Common Multiple

The left denominator is : a + b

The right denominator is : (2a - 3b) • (3a + 5b)

Number of times each Algebraic Factor

appears in the factorization of:

Algebraic

Factor Left

Denominator Right

Denominator L.C.M = Max

{Left,Right}

a + b 1 0 1

2a - 3b 0 1 1

3a + 5b 0 1 1

Least Common Multiple:

(a + b) • (2a - 3b) • (3a + 5b)

Calculating Multipliers :

12.3 Calculate multipliers for the two fractions

Denote the Least Common Multiple by L.C.M

Denote the Left Multiplier by Left_M

Denote the Right Multiplier by Right_M

Denote the Left Deniminator by L_Deno

Denote the Right Multiplier by R_Deno

Left_M = L.C.M / L_Deno = (2a - 3b)•(3a + 5b)

Right_M = L.C.M / R_Deno = a + b

Making Equivalent Fractions :

12.4 Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example : 1/2 and 2/4 are equivalent, y/(y+1)2 and (y2+y)/(y+1)3 are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

L. Mult. • L. Num. -a • (5ab-2a-2b) • (2a-3b) • (3a+5b)

—————————————————— = ————————————————————————————————————

L.C.M (a+b) • (2a-3b) • (3a+5b)

R. Mult. • R. Num. 2b2 • (a+b)

—————————————————— = —————————————————————————

L.C.M (a+b) • (2a-3b) • (3a+5b)

Adding fractions that have a common denominator :

12.5 Adding up the two equivalent fractions

-a • (5ab-2a-2b) • (2a-3b) • (3a+5b) - (2b2 • (a+b)) -30a4b+12a4-5a3b2+14a3b+75a2b3-28a2b2-30ab3-2ab2-2b3

———————————————————————————————————————————————————— = ————————————————————————————————————————————————————

(a+b) • (2a-3b) • (3a+5b) (a+b) • (2a-3b) • (3a+5b)

STEP

13

:

Pulling out like terms :

13.1 Pull out like factors :

-30a4b + 12a4 - 5a3b2 + 14a3b + 75a2b3 - 28a2b2 - 30ab3 - 2ab2 - 2b3 =

-1 • (30a4b - 12a4 + 5a3b2 - 14a3b - 75a2b3 + 28a2b2 + 30ab3 + 2ab2 + 2b3)

Similar questions