Math, asked by navyanavya72, 2 months ago

simplify-2i(3+i)(2+4i)(1+i) and obtain the modulus of that complex number​

Answers

Answered by MysticSohamS
3

Answer:

hey here is your answer

pls mark it as brainliest

Step-by-step explanation:

so \: here \:  \\  - 2i(3 + i)(2 + 4i)(1 + i) \\  \\  =  - 2i(3 + i) \times 2(1 + 2i)(1 + i) \\  \\  =  -  4i(3 + i)(1 + 2i)(1 + i) \\  \\  =  - 4i(3 + i)(1 + i + 2i + 2i {}^{2} ) \\   \\  = ( - 12i - 4i {}^{2} )(1 + 3i + 2i {}^{2} ) \\  \\  = ( - 12i - 4( - 1)) \times (1 + 3i + 2( - 1)) \\  \\  = ( - 12i + 4)(3i - 1) \\   \\  =  - 36i {}^{2}  + 12i + 12i - 4 \\  \\  =  - 36( - 1) + 24i - 4 \\  \\  = 36 - 4 + 24i \\  \\  = 32 + 24i \\  \\ so \: comparing \: this \: complex \: number \: with  \:  a + ib \\ we \: get \\  \\ a = 32 \\ b = 24 \\  \\ so \: hence \: then \\  |z|  =  \sqrt{a {}^{2}  + b {}^{2} }  \\  \\  =  \sqrt{(32) {}^{2} + (24) {}^{2}  }  \\  \\  =  \sqrt{1024 + 576}  \\  \\  =  \sqrt{1600}  \\  \\  = 40 \\  \\  |z|  = 40

Similar questions