Math, asked by haninaveed, 6 months ago

Simplify (2x^2)^-3 upon x^5​

Answers

Answered by Asterinn
2

 \implies   \sf  \dfrac{{(2 {x}^{2} )}^{ - 3} }{ {x}^{5} }

We know that :-

\red{  \underline {\blue{ \boxed{ \bf  \large {(ab)}^{n} =  {a}^{n}  \times   {b}^{n} }}}}

\implies   \sf  \dfrac{{(2  )}^{ - 3}  \times{ ({x}^{2} )}^{ - 3} }{ {x}^{5} }

We know that :-

\red{  \underline {\blue{ \boxed{ \bf  \large  ({{a}^{n})}^{m}  =  {a}^{nm}  }}}}

\implies   \sf  \dfrac{{(2  )}^{ - 3}  \times{ ({x})^{ - 6} } }{ {x}^{5} }

We know that :

\red{  \underline {\blue{ \boxed{ \bf  \large  \frac{ {a}^{n} }{ {a}^{m} } =  {a}^{n - m}    }}}}

\implies   \sf {{(2  )}^{ - 3}  \times{ ({x})^{ - 6 - 5} } }

\implies   \sf {{(2  )}^{ - 3}  \times{ ({x})^{ - 11} } }

We know that :

\red{  \underline {\blue{ \boxed{ \bf  \large  {a}^{- m}  =  \frac{1 }{ {a}^{m} }   }}}}

\implies   \sf  \dfrac{1}{{{(2  )}^{  3} }  \times{ ({x})^{  11} } }

2³=8

\implies   \sf  \dfrac{1}{{8 }{ ({x})^{  11} } }

Answer :

\bf  \dfrac{1}{{8 }{ ({x})^{  11} } }

____________________

\large\bf\blue{Additional-Information}

1)a^m\times  a^n= {a}^{(m + n)}

2) {( {a}^{m})}^{n}   =  {a}^{mn}

3) {ab}^{n}  =  {a}^{n}  {b}^{n}

4) \frac{ {(a)}^{m} }{ {(a)}^{n} } = {a}^{m - n}

5) {a}^{ - b}  =  \frac{1}{ {a}^{b} }

Similar questions