Math, asked by rapazafotolica, 5 hours ago

simplify (2x^3-3x^2+x-6)/ (x-2)​

Answers

Answered by charanimukku
0

Step-by-step explanation:

STEP

1

:

Equation at the end of step 1

 ((((2•(x3))-3x2)+x)-6)•(x-2)

STEP  

2

:

Equation at the end of step

2

:

 (((2x3 -  3x2) +  x) -  6) • (x - 2)

STEP

3

:

Checking for a perfect cube

3.1    2x3-3x2+x-6  is not a perfect cube

Trying to factor by pulling out :

3.2      Factoring:  2x3-3x2+x-6  

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x-6  

Group 2:  2x3-3x2  

Pull out from each group separately :

Group 1:   (x-6) • (1)

Group 2:   (2x-3) • (x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

3.3    Find roots (zeroes) of :       F(x) = 2x3-3x2+x-6

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

 

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  2  and the Trailing Constant is  -6.

The factor(s) are:

of the Leading Coefficient :  1,2

of the Trailing Constant :  1 ,2 ,3 ,6

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        -12.00      

     -1       2        -0.50        -7.50      

     -2       1        -2.00        -36.00      

     -3       1        -3.00        -90.00      

     -3       2        -1.50        -21.00      

     -6       1        -6.00        -552.00      

     1       1        1.00        -6.00      

     1       2        0.50        -6.00      

     2       1        2.00        0.00      x-2  

     3       1        3.00        24.00      

     3       2        1.50        -4.50      

     6       1        6.00        324.00      

The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that

  2x3-3x2+x-6  

can be divided with  x-2  

Polynomial Long Division :

3.4    Polynomial Long Division

Dividing :  2x3-3x2+x-6  

                             ("Dividend")

By         :    x-2    ("Divisor")

dividend     2x3  -  3x2  +  x  -  6  

- divisor  * 2x2     2x3  -  4x2          

remainder         x2  +  x  -  6  

- divisor  * x1         x2  -  2x      

remainder             3x  -  6  

- divisor  * 3x0             3x  -  6  

remainder                0

Quotient :  2x2+x+3  Remainder:  0  

Trying to factor by splitting the middle term

3.5     Factoring  2x2+x+3  

The first term is,  2x2  its coefficient is  2 .

The middle term is,  +x  its coefficient is  1 .

The last term, "the constant", is  +3  

Step-1 : Multiply the coefficient of the first term by the constant   2 • 3 = 6  

Step-2 : Find two factors of  6  whose sum equals the coefficient of the middle term, which is   1 .

     -6    +    -1    =    -7  

     -3    +    -2    =    -5  

     -2    +    -3    =    -5  

     -1    +    -6    =    -7  

     1    +    6    =    7  

     2    +    3    =    5  

     3    +    2    =    5  

     6    +    1    =    7  

Observation : No two such factors can be found !!

Conclusion : Trinomial can not be factored

Multiplying Exponential Expressions:

3.6    Multiply  (x-2)  by  (x-2)  

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (x-2)  and the exponents are :

         1 , as  (x-2)  is the same number as  (x-2)1  

and   1 , as  (x-2)  is the same number as  (x-2)1  

The product is therefore,  (x-2)(1+1) = (x-2)2  

Final result :

 (2x2 + x + 3) • (x - 2)2

Similar questions