Math, asked by krishnagupta9262, 1 year ago

Simplify (2x + p - c) whole square - (2x - p + c) whole square

Answers

Answered by abhi569
1

 \mathbf{(2x + p - c )^2 - ( 2x - p + c )^2 }\\ \\ \mathbf{we \; \; know , a^2 - b^2 = (a + b )( a - b ) }


Hence,


=> ( 2x + p - c + 2x - p + c ) ( 2x + p - c - 2x + p - c )


=> ( 4x ) ( 2p - 2c )



Answered by nilesh102
2

\textbf{\huge\underline{\underline\red{Solution} : -  }}</p><p>\\  \\  =  &gt; \bold{ ({2x   + p    -   c})^{2} -  ({2x   -  p    +  c})^{2}  } \\  \\  \bold \purple{we \: use \: formula}\\ \\ \bold \red{ {a}^{2} -  {b}^{2}  =  {(a + b)} \:  \:  {(a - b)} } \\   \\  \bold {\underline \orange{let}}  \\  \bold {\red{a = ({2x +p  - c}) \:  \: and \:  \: b = ({2x -p  + c})}}\\ \\  = \bold{( ({2x +p  - c} )+   ({2x -p  + c})) } \:  \: \bold{ (({2x +p  - c )-( 2x -p  + c}))  } \\  \\  = \bold{( {2x +p  - c} +  {2x - p  + c})  } \:  \: \bold{ ({2x +p  - c -2x  + p   -  c}) } \\  \\   = \bold {(4x)  \:  \:  {(2p - 2c)} } \\  \\  =   \fbox{\fbox{\bold \red {2((2x) \: (p - c))}}}  \\  \\  \fbox{ \bold \purple{i \: hope \: it \: helps \: you.}}

Similar questions