Math, asked by johnkramer102, 7 months ago

simplify (2x+y-z)^2-(2x-y+z)^2

Answers

Answered by Saby123
17

To simplify -

Simplify ( 2x + y - z )² - ( 2x - y + z )² .

Solution -

We know that -

( a + b - c )² = a² + b² + c² + 2ab - 2ac - 2bc .

( a - b + c )² = a² + b² + c² - 2ab - 2bc + 2ac .

Using these identities here -

( 2x + y - z )²

=> [ 2x ]² + [ y ]² + [ z ] ² + 2 ( 2x )( y ) + 2 ( y )( -z ) + 2 ( 2x )( -z ) .

=> 4x² + y² + z² + 4xy - 2yz - 4xz . ...... { 1 }

( 2x - y + z )²

=> [ 2x ]² + [ y ]² + [ z ] ² + 2 ( 2x )( -y ) + 2 (- y )( z ) + 2 ( 2x )( z ) .

=> 4x² + y² + z² - 4xy - 2yz + 4xz . ...... { 2 }

[ 1 ] - [ 2 ]

→ 4x² + y² + z² + 4xy - 2yz - 4xz - ( 4x² + y² + z² - 4xy - 2yz + 4xz )

→ 4x² + y² + z² + 4xy - 2yz - 4xz - 4x² - y² - z² + 4xy + 2yz - 4xz )

→ 4xy - 2yz - 4xz - 4xy + 2yz - 4xz

→ -8 xZ .

This is the required answer.

______________________________________

Answered by ManuAgrawal01
84

Given:-

 \bf \implies(2x  + y - z {)}^{2}  - (2x - y + z {)}^{2}

To Find:-

  \bf \implies the \: solution

STEP BY STEP EXPLANATION:-

 \bf \implies(2x  + y - z {)}^{2}  - (2x - y + z {)}^{2}  \\  \\  \\    \bf \implies4 {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 4xy - 4xz - 2yz - (2y  - y + z {)}^{2}  \\  \\ \\  \bf \implies4 {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 4xy - 4xz - 2yz - (y + z {)}^{2}  \\  \\  \\ \bf \implies4 {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 4xy - 4xz - 2yz - (  {y}^{2} + 2y z+  {z}^{2} ) \\  \\  \\ \bf \implies4 {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 4xy - 4xz - 2yz -  {y}^{2}   -   2y z -   {z}^{2}  \\  \\  \\ \bf \implies4 {x}^{2}  +    {z}^{2}  + 4xy - 4xz - 2yz - {z}^{2}  \\  \\  \\ \bf \implies4 {x}^{2}  +   4xy - 4xz - 2yz - 2yz \\  \\  \\ \bf \implies4 {x}^{2}  + 4xy - 4xz - 4yz

Similar questions