Simplify: 2y(3x^2-2x+y^2)– 3x (3y^2– 4x).
Answers
Answer:
2y3 - 9y2x + 6yx2 - 4yx + 12x2
Step-by-step explanation:
Step 1 :
Equation at the end of step 1 :
(2y•(((3•(x2))-2x)+(y2)))-(3x•(3y2-4x))
Step 2 :
Trying to factor as a Difference of Squares :
2.1 Factoring: 3y2-4x
Theory : A difference of two perfect squares, A2 - B2 can be factored into (A+B) • (A-B)
Proof : (A+B) • (A-B) =
A2 - AB + BA - B2 =
A2 - AB + AB - B2 =
A2 - B2
Note : AB = BA is the commutative property of multiplication.
Note : - AB + AB equals zero and is therefore eliminated from the expression.
Check : 3 is not a square !!
Ruling : Binomial can not be factored as the
difference of two perfect squares
Equation at the end of step 2 :
(2y•(((3•(x2))-2x)+(y2)))-3x•(3y2-4x)
Step 3 :
Equation at the end of step 3 :
(2y • ((3x2 - 2x) + y2)) - 3x • (3y2 - 4x)
Step 4 :
Trying to factor a multi variable polynomial :
4.1 Factoring y2 + 3x2 - 2x
Try to factor this multi-variable trinomial using trial and error
Factorization fails
Equation at the end of step 4 :
2y • (y2 + 3x2 - 2x) - 3x • (3y2 - 4x)
Step 5 :
Final result :
2y3 - 9y2x + 6yx2 - 4yx + 12x2
Processing ends successfully
Answer:
[(2y+x)2(2y-x)] + [(2x+y)2(2x-y)]
[(4y2+x2+4xy)(2y-x)] + [(4x2+y2+4xy)(2x-y)]
[8y3+2x2y+8xy2-4xy2-x3-4x2y] + [8x3+2xy2+8x2y-4x2y-y3-4xy2]
[8y3-x3-2x2y+4xy2] + [8x3-y3-2xy2+4x2y]
8y3 - y3 + 8x3 - x3 + 2xy2 + 2x2y
7y3 +7x3 + 2xy(x+y)
7(x3 + y3) + 2xy(x+y)
(7)(x + y)(x2 + y2 - xy) + 2xy(x + y)
(7)(x+y)(x2 + y2 - xy + 2xy)
(7)(x + y)(x2 + y2 + xy)