Math, asked by varsha145, 1 year ago

simplify: (√3+1)(1-√12)+9/√3+√12

Answers

Answered by DaIncredible
47
Hey friend,
Here is the answer you were looking for:
 \frac{( \sqrt{3} + 1)(1 -  \sqrt{12}) + 9  }{ \sqrt{3} +  \sqrt{12}  }  \\  \\  =  \frac{( \sqrt{3} \times 1 -  \sqrt{3} \times  \sqrt{12} + 1 \times 1 - 1 \times  \sqrt{12} ) + 9   }{ \sqrt{3}  +  \sqrt{12} }  \\  \\  =  \frac{( \sqrt{3} -  \sqrt{36} + 1 -  \sqrt{12}) + 9   }{ \sqrt{3}  +  \sqrt{12} }  \\  \\  =  \frac{ \sqrt{3}  - 6 + 12 \sqrt{3} + 9 }{ \sqrt{3} + 2 \sqrt{3}  }  \\  \\  =  \frac{13 \sqrt{3} + 3 }{ \sqrt{3}  + 2 \sqrt{3} }  \\   \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\  =  \frac{13 \sqrt{3}  + 3}{ \sqrt{3}  + 2 \sqrt{3} }  \times  \frac{ \sqrt{3} - 2 \sqrt{3}  }{ \sqrt{3} - 2 \sqrt{3}  }  \\  \\ using \: the \: identity \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{13 \sqrt{3}  \times  \sqrt{3}  - 13 \sqrt{3}  \times 2 \sqrt{3}  + 3  \times \sqrt{3}  - 3 \times 2 \sqrt{3} }{ {( \sqrt{3}) }^{2} -  {(2 \sqrt{3}) }^{2}  }  \\  \\  =  \frac{13 \times 3 - 26 \times 3 + 3 \sqrt{3} - 6 \sqrt{3}  }{3 - 12}  \\  \\  =  \frac{39 - 78  -  3 \sqrt{3}  }{ - 9}  \\  \\  =  \frac{ - 39 - 3 \sqrt{3} }{ - 9}  \\  \\  =  - (  \frac{ - 39 - 3 \sqrt{3} }{9} ) \\  \\  =  \frac{39 + 3 \sqrt{3} }{9}  \\  \\  =  \frac{13 +  \sqrt{3} }{3}


Hope this helps!!!

@Mahak24

Thanks.....
☺☺

DaIncredible: thnx for brainliest
Similar questions