Math, asked by sathinarayanareddy54, 6 months ago

simplify / (√3+√2)^2 +(√3-√2)^2. plzzzzzzzzzzzz tell full proses​

Answers

Answered by TheFairyTale
7

 \underline {\sf  AnswEr:-}

 \rightarrow \red {\boxed{10}}

GivEn :-

  •  \sf( \sqrt{3}  +  \sqrt{2} ) ^{2}  +  {( \sqrt{3} -  \sqrt{2}  )}^{2}

To Find :-

  • Simplification

Solution :-

 \sf( \sqrt{3}  +  \sqrt{2} ) ^{2}  +  {( \sqrt{3} -  \sqrt{2}  )}^{2}

 \implies  \sf\frac{ {( \sqrt{3}  +  \sqrt{2} +  \sqrt{3}  -  \sqrt{2})  }^{2} +  {( \sqrt{3} +  \sqrt{2} -  \sqrt{3}   +  \sqrt{2} ) }^{2}  }{2}

 \implies \sf \:   \frac{ {(2 \sqrt{3}) }^{2} +  {(2 \sqrt{2)} }^{2}  }{2}

 \implies \sf \:  \frac{(4 \times 3) + (4 \times 2)}{2}

 \implies \sf \:  \frac{12 + 8}{2}

 \implies \sf \: \frac{ \cancel20}{ \cancel2}

 \implies \sf {\boxed {\red { 10}}}

Formula Used :-

We know,

 \sf \: 2( {x}^{2}  +  {y}^{2} )

 \implies \sf \: ( {x}^{2}  +  {y}^{2}) + ( {x}^{2}   -  {y}^{2} )

  \therefore\sf( {x}^{2}  +  {y}^{2} )

 \implies \sf \:  \frac{( {x}^{2} +  {y}^{2} ) + ( {x}^{2} -  {y}^{2})   }{2}

Putting the given values we get the answer !

Similar questions