Math, asked by Anuj3760, 1 year ago

Simplify √(3+2√2)
 \sqrt{3 + 2 \sqrt{2} }

Answers

Answered by ihrishi
0

Answer:

 \sqrt{3 + 2 \sqrt{2} }  =  \sqrt{1 + 2 + 2 \sqrt{2} }  \\  =  \sqrt{ {(1)}^{2} +  { (\sqrt{2} )}^{2} + 2 \sqrt{2}   }  \\  = \sqrt{ {(1)}^{2} +  + 2 \sqrt{2} +  { (\sqrt{2} )}^{2} }  \\  =  \sqrt{(1 +  \sqrt{2})^{2}  }  \\  = 1 +  \sqrt{2}  \\ thus \\  \sqrt{3 + 2 \sqrt{2} }  =  1 +  \sqrt{2}  \\

Answered by Anonymous
1

 =  >  \sqrt{( \sqrt{3} + 2 \sqrt{2} ) }

 =  >  \sqrt{1 + 2 + 2 \sqrt{2} }

 =  >  \sqrt{ {(1)}^{2} +  {( \sqrt{2}) }^{2} + 2 \sqrt{2}   }

 =  >  \sqrt{ {(1)}^{2} + 2 \sqrt{2} +  {( \sqrt{2} )}^{2}   }

 =  >  \sqrt{(1 +  \sqrt{2} )^{2}  }

 =  > 1 \:  +  \:  \sqrt{2}

\sqrt{3+2√2} = 1 + 2 ☑️

Similar questions