Math, asked by alisha7011, 4 months ago


Simplify: {( -3/4 )³ - (-5/2)³} × 4²​

Answers

Answered by mathdude500
3

\underline\blue{\bold{Given \:  Question :-  }}

\bf \:Simplify: ({( -3/4 )³ - (-5/2)³}) × 4²

__________________________________________

\huge \orange{AηsωeR} ✍

\underline\blue{\bold{Use \: the \: following \: identities :-  }}

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{a^m\times{a^n}\:=\:a^{m\:+\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\purple{\dfrac{a^m}{a^n}\:=\:a^{m\:-\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\red{\dfrac{1}{x^n}\:=\:x^{-n}\:}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\color{peru}{(a^m)^n\:=\:a^{m\times{n}}\:}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\green{( {xy)}^{n}  =  {x}^{n}  \times  {y}^{n} }}}}} \\ \end{gathered}

\begin{gathered}(6)\:{\underline{\boxed{\bf{\orange{ {(\dfrac{x}{y} )}^{n}  = \dfrac{ {x}^{n} }{ {y}^{n} } }}}}} \\ \end{gathered}

\begin{gathered}(7)\:{\underline{\boxed{\bf{\green{ {( - x)}^{odd} \:=\: -  {(x)}^{odd} }}}}} \\ \end{gathered}

\begin{gathered}(8)\:{\underline{\boxed{\bf{\blue{ {( - x)}^{even} \:=\: -  {(x)}^{even} }}}}} \\ \end{gathered}

____________________________________________

\begin{gathered}\Large{\underline{\bf{\color{purple}CaLcULatIoN,}}} \end{gathered}

\begin{gathered}\bf\red{According \: to \: statement}\end{gathered}

\bf \:  ⟼ (( {\dfrac{ - 3}{4} )}^{ 3}  - ( {\dfrac{ - 5}{2} )}^{3}  )\times  {4}^{2}

\bf \:  ⟼ [  -  {(\dfrac{3}{4}) }^{3}  +  ({\dfrac{5}{2} )}^{3} ] \times  {4}^{2}

\bf \:  ⟼ [  - \dfrac{ {3}^{3} }{ {4}^{3} } + \dfrac{ {5}^{3} }{ {2}^{3} }  ] \times 16

\bf \:  ⟼ [  - \dfrac{27}{64}  + \dfrac{125}{8} ] \times 16

\bf \:  ⟼ [\dfrac{ - 27 + 100}{64}  ] \times 16

\bf\implies \:\dfrac{963}{4}

\large{\boxed{\boxed{\bf\implies \:{(( {\dfrac{ - 3}{4} )}^{ 3}  - ( {\dfrac{ - 5}{2} )}^{3}  )\times  {4}^{2}= \dfrac{963}{4} }}}}

___________________________________________

Similar questions