Math, asked by Anonymous, 4 months ago

simplify [(-3/4)^4 × (-3/4)^-2] ÷ [(3/4)^2]^-2​

Answers

Answered by Anonymous
475

 \bigg [\sf{  \bigg(\frac{ - 3}{4}  \bigg) ^{4}   \times   \bigg(\frac{ - 3}{2} \bigg) \bigg] ^{3}  }\\  \\   \sf{= \bigg[  {\frac{ - 3}{4}}^{  \big(\frac{(4+2)}{( \frac{3}{4})} \big) ^{2} } \bigg]  ^{3} }\\  \\ = \bigg[  \bigg \{  \frac{(\frac{ - 3}{4}  )^6}{( \frac{3}{4} ) ^{2} }\bigg \} \bigg]^{3}  \\  \\  \sf{we \:  know, }\\   \sf{(-x)ⁿ = xⁿ \:  when  \: n = even \:  number }\\  \\  \sf{so , \bigg ( \frac{3}{4} \bigg )^{2}  = \bigg ( \frac{-3}{4} \bigg) ^{2} } \\  \\  \sf{use \:  this  \: here , }\\  \\ = \sf{ \bigg[ \bigg ( \frac{-3}{4} \bigg)^{(6-2)} \bigg]^{3}  }\\  \\ = \sf{ \bigg[ \bigg( \frac{3}{4} \bigg) ^{4} \bigg ] ^{3}  }\\  \\  \boxed{ \purple{ \bigg( \frac{3}{4}\bigg)^{12}} }\\  \\


saritayadav9039: hi
kunwersbisht: oo teri itte comments
Answered by Anonymous
212

Answer:

\begin{gathered} \bigg [\sf{ \bigg(\frac{ - 3}{4} \bigg) ^{4} \times \bigg(\frac{ - 3}{2} \bigg) \bigg] ^{3} }\\ \\ \sf{= \bigg[ {\frac{ - 3}{4}}^{ \big(\frac{(4+2)}{( \frac{3}{4})} \big) ^{2} } \bigg] ^{3} }\\ \\ = \bigg[ \bigg \{ \frac{(\frac{ - 3}{4} )^6}{( \frac{3}{4} ) ^{2} }\bigg \} \bigg]^{3} \\ \\ \sf{we \: know, }\\ \sf{(-x)ⁿ = xⁿ \: when \: n = even \: number }\\ \\ \sf{so , \bigg ( \frac{3}{4} \bigg )^{2} = \bigg ( \frac{-3}{4} \bigg) ^{2} } \\ \\ \sf{use \: this \: here , }\\ \\ = \sf{ \bigg[ \bigg ( \frac{-3}{4} \bigg)^{(6-2)} \bigg]^{3} }\\ \\ = \sf{ \bigg[ \bigg( \frac{3}{4} \bigg) ^{4} \bigg ] ^{3} }\\ \\ \boxed{ \orange{ \bigg( \frac{3}{4}\bigg)^{12}} }\\ \\ \end{gathered} </p><p>


Anonymous: ᴀʙᴇ ᴛᴏ ᴛᴏ ᴄʜᴇᴀᴛɪɴɢ ᴋyᴀ ʜ xᴅ
Anonymous: Hn yr cheating ke alava kuch nhi ata meko
Anonymous: ʜᴍ
saritayadav9039: bol kya hua reply de
Anonymous: nhi
Anonymous: hm
Similar questions