Math, asked by koilyanm060, 2 months ago

simplify: 3/4(45/24+10/15) kindly step by step explanation.​

Answers

Answered by TwinkleTwinkle21
4

Answer:

Refer to the above attachment ✌️

Attachments:
Answered by oluwaferanmioluwatis
0

Answer: \frac{151}{96}

Step-by-step explanation:

\frac{3}{4}\left(\frac{45}{24}+\frac{10}{45}\right)

\frac{45}{24} (cancel the common factor which is 3)

\frac{45}{28} =\frac{15}{8}

\frac{10}{45} (cancel the common factor which is 5)

\frac{10}{45} =\frac{2}{9}

\frac{3}{4} (\frac{15}{8} +\frac{2}{9} )

Find the LCM of 8 & 9: 72

(\mathrm{Multiply\:each\:numerator\:by\:the\:same\:amount\:needed\:to\:multiply\:its} \mathrm{corresponding\:denominator\:to\:turn\:it\:into\:the\:LCM}\:72)

(\mathrm{For}\:\frac{15}{8}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:9)

\frac{15}{8}=\frac{15\cdot \:9}{8\cdot \:9}=\frac{135}{72}

(\mathrm{For}\:\frac{2}{9}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:8)

\frac{2}{9}=\frac{2\cdot \:8}{9\cdot \:8}=\frac{16}{72}

=\frac{135}{72}+\frac{16}{72}

(\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c})

\frac{135}{72}+\frac{16}{72} =\frac{135+16}{72}

(\mathrm{Add\:the\:numbers:}\:135+16=151)

=\frac{151}{72}

=\frac{3}{4}\cdot \frac{151}{72}\\(\mathrm{Cross-cancel\:common\:factor:}\:3)\\(\mathrm{The\:prime\:factors\:common\:of\:}3and\:72\mathrm{\:is\:}=3)

=\frac{1}{4}\cdot \frac{151}{24}\\\mathrm{Multiply\:fractions}\\\\=\frac{151}{4\cdot \:24}\\\\=\frac{151}{96}

Similar questions