Math, asked by ayushkumar88296, 11 months ago

simplify 3√45-√125+√200-√50 solve this question​

Answers

Answered by gothwalshubham95
0

Answer:

9√5 - 5√5 + 10√2 - 5√2 = 4√5 + 5√2

Hope it helps.

Mark as the brainliest if you like :)

Answered by Anonymous
0

\Large{\underline{\underline{\bf{Solution :}}}}

As, we have to find the value of

\sf{3\sqrt{45} - \sqrt{125} + \sqrt{200} - \sqrt{60}}

So, we will make factors of 45, 125, 200 and 50.

\sf{\small{→ 3 \sqrt{3 \times 3 \times 5} - \sqrt{5 \times 5 \times 5} + \sqrt{2 \times 2 \times 2 \times 5 \times 5} - \sqrt{2 \times 5 \times 5}}} \\ \\ \sf{→ 9\sqrt{5} - 5 \sqrt{5} + 10\sqrt{2} - 5\sqrt{2}} \\ \\ \sf{→ 4\sqrt{5} + 5\sqrt{2}}

\rule{200}{2}

Prime factorisation of 45

\begin{array}{r | l} 3 & 45 \\ \cline{1-2} 3 & 15 \\  \cline{1-2} 5 & 5 \\ \cline{1-2}  & 1 \end{array}

\rule{200}{2}

Prime factorisation of 125

\begin{array}{r | l} 5 & 125 \\ \cline{1-2} 5 & 25 \\  \cline{1-2} 5 & 5 \\ \cline{1-2}  & 1 \end{array}

\rule{200}{2}

Prime factorisation of 200

\begin{array}{r | l} 2 & 200 \\ \cline{1-2} 2 & 100 \\  \cline{1-2} 2 & 50  \\ \cline{1-2} 5 & 25 \\  \cline{1-2} 5 & 5 \\ \cline{1-2}  & 1 \end{array}

\rule{200}{2}

Prime factorisation of 50

\begin{array}{r | l} 2 & 50 \\ \cline{1-2} 5 & 25 \\  \cline{1-2} 5 & 5 \\ \cline{1-2}  & 1 \end{array}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

\setlength{\unitlength}{0.19 cm}}\begin{picture}(12,4)\thicklines\put(12,40){$\#\:STAY\:HOME$}\put(11,35){$\#\:STAY\: SAFETY$}\put(20,20){\circle{10}}\put(19.5,21){\line(-1,0){1.5}}\put(20.5,21){\line(1,0){1.5}}\put(18.8,20.3){\circle*{0.7}}\put(21.1,20.3){\circle*{0.7}}\put(20,20.4){\line(0,-1){1.4}}\put(20.7,18.4){\line(-1,0){1.57}}\put(18.6,16.56){\line(0,-1){2}}\put(21.4,16.56){\line(0,-1){2}}\put(19,14.55){\line(-1,0){5}}\put(21,14.55){\line(1,0){5}}\put(14,14.55){\line(0,-1){16}}\put(26,14.55){\line(0,-1){16}}\put(14,14.55){\line(-4,3){5}}\put(26,14.55){\line(4,3){5}}\put(14,11){\line(-4,3){7.5}}\put(26,11){\line(4,3){7.5}}\put(9,18.3){\line(0,1){8.3}}\put(31,18.3){\line(0,1){8.3}}\put(33.5,16.6){\line(0,1){10}}\put(6.5,16.6){\line(0,1){10}}\put(3.5,26.5){\line(1,0){33}}\put(3.5,26.5){\line(0,1){20}}\put(3.5,46.5){\line(1,0){33}}\put(36.5,26.5){\line(0,1){20}}\put(14,-0.6){\line(1,0){12}}\put(14,-1.5){\line(1,0){12}}\put(14.4,-1.6){\line(0,-1){18.5}}\put(25.6,-1.6){\line(0,-1){18.5}}\put(20,-1.6){\line(0,-1){3}}\put(20,-4.6){\line(-1,-6){2.6}}\put(20,-4.6){\line(1,-6){2.6}}\put(14.4,-20){\line(-5,-6){3}}\put(25.6,-20){\line(5,-6){3}}\put(17.3,-20){\line(0,-1){3.7}}\put(17.3,-20){\line(-1,0){3}}\put(17.3,-23.6){\line(-1,0){6}}\put(22.6,-20){\line(0,-1){3.7}}\put(22.6,-20){\line(1,0){3}}\put(22.6,-23.6){\line(1,0){6}}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

Similar questions