Math, asked by niteshkatiyar17, 8 months ago

simplify (√3-√5) (√5+√3)/7-2√5



Answers

Answered by Uriyella
7

Given :–

  • An equation,  \dfrac{(\sqrt{3} - \sqrt{5})(\sqrt{5} + \sqrt{3})}{7 - 2\sqrt{5}}

Required :–

  • Simplify the given equation.

Solution :–

Given equation is,

 \dfrac{(\sqrt{3} - \sqrt{5})(\sqrt{5} + \sqrt{3})}{7 - 2\sqrt{5}}

Open both the brackets of numerator.

 \dfrac{\cancel{\sqrt{15}} + \sqrt{9} - \sqrt {25} - \cancel{\sqrt{15}}}{7 - 2 \sqrt{5} }

 \dfrac{ \sqrt{9} - \sqrt{25}}{7 - 2 \sqrt{5} }

We know that,

  • √9 = 3
  • √25 = 5

So,

 \dfrac{3 - 5}{7 - 2 \sqrt{5} }

 \dfrac{-2}{7 - 2 \sqrt{5} }

Now,

Multiply the additive inverse of denominator by both the numerator and the denominator.

 \dfrac{ - 2}{7 - 2 \sqrt{5} }  \times  \dfrac{7 + 2 \sqrt{5} }{7 + 2 \sqrt{5}}

Again,

Using this identity.

• (a – b)(a + b) = a² – b²

 \dfrac{ - 2(7 + 2 \sqrt{5} )}{(7)^{2}  +  {(2\sqrt{5} )}^{2}}

Again, square root cancel the power.

Open all the brackets.

 \dfrac{ - 14 - 4 \sqrt{5} }{49 -4 \times 5}

 \dfrac{ - 14 - 4 \sqrt{5} }{49 - 20}

Now, subtract the denominator,

 \dfrac{ - 14 - 4 \sqrt{5} }{29}

Hence,

The answer of the given equation is  \dfrac{ - 14 - 4 \sqrt{5} }{29}

Similar questions