Math, asked by 098td, 11 months ago

Simplify 3 root 2 by root 6 minus root 3 minus 4 root 3 by root 6 + root 3 + 2 root 3 by 6 root + 2

Answers

Answered by aditisingh12468
15

Step-by-step explanation:

hope it helps...

mark me as brainliest

Attachments:
Answered by gayatrikumari99sl
2

Answer:

\sqrt{12}  +\sqrt{6} - 4\sqrt{2} + 4  +{\sqrt{18} - 2\sqrt{3} is the required value of

\frac{3\sqrt{2} }{\sqrt{6}-\sqrt{3}  }  - \frac{4\sqrt{3} }{\sqrt{6+ \sqrt{3} } }  +\frac{2\sqrt{3} }{\sqrt{6} + 2 }.

Step-by-step explanation:

Explanation:

Given in the question that, \frac{3\sqrt{2} }{\sqrt{6}-\sqrt{3}  }  - \frac{4\sqrt{3} }{\sqrt{6+ \sqrt{3} } }  +\frac{2\sqrt{3} }{\sqrt{6} + 2 }

First we rationalize the given numerical one by one.

Step 1:

First we rationalize \frac{3\sqrt{2} }{\sqrt{6}-\sqrt{3}  },

So, multiplying numerator and denominator by \sqrt{6} +\sqrt{3},

\frac{3\sqrt{2} }{\sqrt{6}-\sqrt{3}  } × \frac{\sqrt{6} +\sqrt{3}}{\sqrt{6} +\sqrt{3}}

\frac{3\sqrt{2}(\sqrt{6} +\sqrt{3}) }{(\sqrt{6} -\sqrt{3})(\sqrt{6} +\sqrt{3})} = \frac{3(\sqrt{12}  +\sqrt{6} )}{6 - 3} = \frac{3(\sqrt{12}  +\sqrt{6} )}{3}  [where (a^2 - b^2  = (a + b)(a - b))]

(\sqrt{12}  +\sqrt{6} ) .........(i)

Now we rationalize \frac{4\sqrt{3} }{\sqrt{6+ \sqrt{3} } },

Multiply numerator and denominator by \sqrt{6}  - \sqrt{3}

\frac{4\sqrt{3} }{\sqrt{6+ \sqrt{3} } } ×\frac{\sqrt{6}  - \sqrt{3}}{\sqrt{6}  -\sqrt{3}}

\frac{4\sqrt{3}(\sqrt{6} - \sqrt{3}  ) }{6 - 3} = \frac{4\sqrt{3}\sqrt{3} (\sqrt{2} - 1  ) }{3} = (4\sqrt{2} - 4 ). ........(ii)

Similarly, on rationalizing \frac{2\sqrt{3} }{\sqrt{6} + 2 } we get,

\frac{2\sqrt{3} }{\sqrt{6} + 2 } ×\frac{ \sqrt{6} - 2}{\sqrt{6} - 2 } = \frac{2\sqrt{3}(\sqrt{6} - 2) }{6 - 4}

\frac{2\sqrt{3}(\sqrt{6} - 2) }{2} = {(\sqrt{18} - 2\sqrt{3} ).........(iii)

Step 2:

\frac{3\sqrt{2} }{\sqrt{6}-\sqrt{3}  }  - \frac{4\sqrt{3} }{\sqrt{6+ \sqrt{3} } }  +\frac{2\sqrt{3} }{\sqrt{6} + 2 }

On putting the values  we get, (\sqrt{12}  +\sqrt{6} ) - (4\sqrt{2} - 4 ) +{(\sqrt{18} - 2\sqrt{3} )

\sqrt{12}  +\sqrt{6} - 4\sqrt{2} + 4  +{\sqrt{18} - 2\sqrt{3}

Final answer:

Hence, the value of \frac{3\sqrt{2} }{\sqrt{6}-\sqrt{3}  }  - \frac{4\sqrt{3} }{\sqrt{6+ \sqrt{3} } }  +\frac{2\sqrt{3} }{\sqrt{6} + 2 } is

\sqrt{12}  +\sqrt{6} - 4\sqrt{2} + 4  +{\sqrt{18} - 2\sqrt{3}.

#SPJ2

Similar questions