Math, asked by Surajbathla, 9 months ago

simplify 3 root 2 minus 2 root 3 by 3 root 2 + 2 root 3 + root 12 by root 3 minus root 2​

Answers

Answered by dassukanta70
3

Answer:

11 or -1 is the answer of this question

Step-by-step explanation:

Rationalise the denominator in both the cases and u will get the answer

Answered by ChitranjanMahajan
1

The answer is 11 + 4√6

Given

\frac{3\sqrt{2} - 2\sqrt{3} }{3\sqrt{2} + 2\sqrt{3} } + \frac{\sqrt{12} }{\sqrt{3} - \sqrt{2}}

To Find

Simplified value

Solution

\frac{3\sqrt{2} - 2\sqrt{3} }{3\sqrt{2} + 2\sqrt{3} } + \frac{\sqrt{12} }{\sqrt{3} - \sqrt{2}}

We first need to rationalize the statement

Multiplying the fractions by 3√ - 2√3 and √3 + √2 respectively we get

\frac{(3\sqrt{2} - 2\sqrt{3} )(3\sqrt{2} - 2\sqrt{3} )}{(3\sqrt{2} + 2\sqrt{3})(3\sqrt{2} - 2\sqrt{3} ) } + \frac{\sqrt{12} (\sqrt{3} +\sqrt{2})}{(\sqrt{3} - \sqrt{2})(\sqrt{3} +\sqrt{2})}

=\frac{(3\sqrt{2} - 2\sqrt{3})^2 }{(3\sqrt{2})^2 - (2\sqrt{3})^2 } + \frac{\sqrt{12}(\sqrt{3} + \sqrt{2})  }{(\sqrt{3})^2 - (\sqrt{2})^2}

Now using the formula

  • (a-b)² = a² - 2ab + b²
  • a² - b² = (a+b)(a-b) we get,

= \frac{18 - 12\sqrt{6} +12 }{18 - 12 } + \frac{6 + 2\sqrt{6}  }{3-2}

Summing up we get

= \frac{30 - 12\sqrt{6} }{6 } + 6 + 2\sqrt{6}

=  5 + 2\sqrt{6} + 6 + 2\sqrt{6}

= 11 + 4√6

Therefore, the answer is 11 + 4√6

#SPJ2

Similar questions