Math, asked by chinu0098gmailcom, 1 year ago

simplify 3 root 2 upon root 6 minus under root 3 + 2 root 2 upon root 6 + root 2 minus 4 root 3 upon under root 6 minus under root 2​

Attachments:

Answers

Answered by MaheswariS
66

\underline{\textsf{Given:}}

\dfrac{3\sqrt{2}}{\sqrt{6}-\sqrt{3}}+\dfrac{2\sqrt{3}}{\sqrt{6}+\sqrt{2}}-\dfrac{4\sqrt{3}}{\sqrt{6}-\sqrt{2}}

\underline{\textsf{To find:}}

\textsf{Simplified form of the given expression}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\dfrac{3\sqrt{2}}{\sqrt{6}-\sqrt{3}}+\dfrac{2\sqrt{3}}{\sqrt{6}+\sqrt{2}}-\dfrac{4\sqrt{3}}{\sqrt{6}-\sqrt{2}}

\textsf{First we rationalize denominator of each fraction}

\dfrac{3\sqrt{2}}{\sqrt{6}-\sqrt{3}}

=\dfrac{3\sqrt{2}}{\sqrt{6}-\sqrt{3}}{\times}\dfrac{\sqrt{6}+\sqrt{3}}{\sqrt{6}+\sqrt{3}}

=\dfrac{3\sqrt{2}(\sqrt{6}+\sqrt{3})}{6-3}

=\dfrac{3\sqrt{2}(\sqrt{6}+\sqrt{3})}{3}

=\sqrt{2}(\sqrt{6}+\sqrt{3})

=\sqrt{12}+\sqrt{6}......(1)

\dfrac{2\sqrt{3}}{\sqrt{6}+\sqrt{2}}

=\dfrac{2\sqrt{3}}{\sqrt{6}+\sqrt{2}}{\times}\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{6}-\sqrt{2}}

=\dfrac{2\sqrt{3}(\sqrt{6}-\sqrt{2})}{6-2}

=\dfrac{2\sqrt{3}(\sqrt{6}-\sqrt{2})}{4}

=\dfrac{\sqrt{3}(\sqrt{6}-\sqrt{2})}{2}

=\dfrac{\sqrt{18}-\sqrt{6}}{2}.....(2)

\dfrac{4\sqrt{3}}{\sqrt{6}-\sqrt{2}}

=\dfrac{4\sqrt{3}}{\sqrt{6}-\sqrt{2}}{\times}\dfrac{\sqrt{6}+\sqrt{2}}{\sqrt{6}+\sqrt{2}}

=\dfrac{4\sqrt{3}(\sqrt{6}+\sqrt{2})}{6-2}

=\dfrac{4\sqrt{3}(\sqrt{6}+\sqrt{2})}{4}

=\sqrt{3}(\sqrt{6}+\sqrt{2})

=\sqrt{18}+\sqrt{6}....(3)

\text{Now,}

\dfrac{3\sqrt{2}}{\sqrt{6}-\sqrt{3}}+\dfrac{2\sqrt{3}}{\sqrt{6}+\sqrt{2}}-\dfrac{4\sqrt{3}}{\sqrt{6}-\sqrt{2}}

=\sqrt{12}+\sqrt{6}+\dfrac{\sqrt{18}-\sqrt{6}}{2}-(\sqrt{18}+\sqrt{6})

=\sqrt{12}+\sqrt{6}+\dfrac{\sqrt{18}-\sqrt{6}}{2}-\sqrt{18}-\sqrt{6}

=\sqrt{12}+\dfrac{\sqrt{18}-\sqrt{6}}{2}-\sqrt{18}

=\dfrac{2\sqrt{12}+\sqrt{18}-\sqrt{6}-2\sqrt{18}}{2}

=\dfrac{2\sqrt{12}-\sqrt{6}-\sqrt{18}}{2}

=\dfrac{4\sqrt{3}-\sqrt{6}-3\sqrt{2}}{2}

\underline{\textsf{Answer:}}

\dfrac{3\sqrt{2}}{\sqrt{6}-\sqrt{3}}+\dfrac{2\sqrt{3}}{\sqrt{6}+\sqrt{2}}-\dfrac{4\sqrt{3}}{\sqrt{6}-\sqrt{2}}=\dfrac{4\sqrt{3}-\sqrt{6}-3\sqrt{2}}{2}

Answered by anikagaur511
0

Answer:

gjkfjkgsfjm f6unkkooursshnn6gbkk

Similar questions