Simplify (3a-2b)(9a^2 +6ab+4b^2) + (2a+3b)^3
Answers
Answer:
Step-by-step explanation:Step 1 :
Equation at the end of step 1 :
((3a-2b)•(((9•(a2))-6ab)+(4•(b2))))-((2a+3b)•(((4•(a2))-6ab)+32b2))
Step 2 :
Equation at the end of step 2 :
((3a-2b)•(((9•(a2))-6ab)+(4•(b2))))-((2a+3b)•((22a2-6ab)+32b2))
Step 3 :
Trying to factor a multi variable polynomial :
3.1 Factoring 4a2 - 6ab + 9b2
Try to factor this multi-variable trinomial using trial and error
Factorization fails
Equation at the end of step 3 :
((3a-2b)•(((9•(a2))-6ab)+(4•(b2))))-(2a+3b)•(4a2-6ab+9b2)
Step 4 :
Equation at the end of step 4 :
((3a-2b)•(((9•(a2))-6ab)+22b2))-(2a+3b)•(4a2-6ab+9b2)
Step 5 :
Equation at the end of step 5 :
((3a-2b)•((32a2-6ab)+22b2))-(2a+3b)•(4a2-6ab+9b2)
Step 6 :
Trying to factor a multi variable polynomial :
6.1 Factoring 9a2 - 6ab + 4b2
Try to factor this multi-variable trinomial using trial and error
Factorization fails
Equation at the end of step 6 :
(3a-2b)•(9a2-6ab+4b2)-(2a+3b)•(4a2-6ab+9b2)
Step 7 :
Checking for a perfect cube :
7.1 19a3-36a2b+24ab2-35b3 is not a perfect cube
Final result :
19a3 - 36a2b + 24ab2 - 35b3
Answer:
19a3 - 35b3
Step-by-step explanation:
Step by step solution :
Step 1 :
Equation at the end of step 1 :
((3a-2b)•(((9•(a2))+6ab)+(4•(b2))))-((2a+3b)•(((4•(a2))-6ab)+32b2))
Step 2 :
Equation at the end of step 2 :
((3a-2b)•(((9•(a2))+6ab)+(4•(b2))))-((2a+3b)•((22a2-6ab)+32b2))
Step 3 :
Trying to factor a multi variable polynomial :
3.1 Factoring 4a2 - 6ab + 9b2
Try to factor this multi-variable trinomial using trial and error
Factorization fails
Equation at the end of step 3 :
((3a-2b)•(((9•(a2))+6ab)+(4•(b2))))-(2a+3b)•(4a2-6ab+9b2)
Step 4 :
Equation at the end of step 4 :
((3a-2b)•(((9•(a2))+6ab)+22b2))-(2a+3b)•(4a2-6ab+9b2)
Step 5 :
Equation at the end of step 5 :
((3a-2b)•((32a2+6ab)+22b2))-(2a+3b)•(4a2-6ab+9b2)
Step 6 :
Trying to factor a multi variable polynomial :
6.1 Factoring 9a2 + 6ab + 4b2
Try to factor this multi-variable trinomial using trial and error
Factorization fails
Equation at the end of step 6 :
(3a-2b)•(9a2+6ab+4b2)-(2a+3b)•(4a2-6ab+9b2)
Step 7 :
Trying to factor as a Difference of Cubes:
7.1 Factoring: 19a3-35b3
Theory : A difference of two perfect cubes, a3 - b3 can be factored into
(a-b) • (a2 +ab +b2)
Proof : (a-b)•(a2+ab+b2) =
a3+a2b+ab2-ba2-b2a-b3 =
a3+(a2b-ba2)+(ab2-b2a)-b3 =
a3+0+0+b3 =
a3+b3
Check : 19 is not a cube !!