Math, asked by naazpreet13, 6 months ago

simplify : (3p^2qr^-2/2p^-1q^3)^2
 \div (2p^3r)^-1 ​

Attachments:

Answers

Answered by MagicalBeast
13

To find :

{ (\dfrac{3 {p}^{2} q {r}^{ - 2} }{2 {p}^{ - 1} {q}^{3}  } )}^{2} \div  {(2 {p}^{ 3} r ) }^{ - 1}

Identity used :

  \bullet \: \dfrac{1}{ {a}^{ - m} }  =  {a}^{m}

\bullet \:  {a}^{m}  \times  {a}^{n}  =  \:  {a}^{m + n} \\\\  \bullet \:  \dfrac{ {a}^{m} }{ {a}^{n} }  \:  =  \:  {a}^{m - n}

  \bullet \: \:  {( {a}^{m} )}^{n}  = {a}^{m + n}    \\ \bullet \: a \div  \dfrac{1}{b}  = ab

Solution :

 { (\dfrac{3 {p}^{2} q {r}^{ - 2} }{2 {p}^{ - 1} {q}^{3}  } )}^{2}   \div  {(2 {p}^{ 3}r ) }^{ - 1}  \\  \\ (  { \dfrac{3}{2} })^{2}  \times ( { {p}^{2 - ( - 1) } \times  {q}^{(1 - 3)}  \times  {r}^{ - 2})  }^{2}  \div  (\dfrac{1}{2 {p}^{ 3}r} ) \\  \\ ( \dfrac{9}{4} ) \times  {( {p}^{3} \times  {q}^{ - 2}   \times  {r}^{ - 2} })^{2}  \times (2 {p}^{ 3} r) \\  \\  \frac{9}{4}  \times  {p}^{3 \times 2}  \times  {q}^{ - 2 \times 2}  \times  {r}^{ - 2 \times 2}  \times (2 {p}^{3}  \times \:r ) \\  \\  \frac{9}{4}  \times  {p}^{6}  \times  {q}^{ - 4}  \times  {r}^{ - 4}  \times 2 \times  {p}^{3}  \times  r  \\  \\  \frac{9 \times 2}{4}  \times  {p}^{6  + ( 3)}  \times  {q}^{ - 4 }  \times  {r}^{ - 4 + 1}  \\  \\  \frac{9}{2}  \times  {p}^{9}  \times  {q}^{ - 4}  \times  {r}^{ - 3}  \\  \\  \frac{9 {p}^{9} }{2{q}^{4} {r}^{3} }

ANSWER :

\sf \bold{ \dfrac{9 {p}^{9} }{2{q}^{4}{r}^{3} } }

Similar questions