Math, asked by prernakanwar, 3 months ago

Simplify(-4) -¹⁰

*(-4)⁵

Answers

Answered by MissMagma
11

\huge\underline{\overline{\mid{\bold{\mathfrak{\green{Answer}\mid}}}}}

 = {( - 4)}^{ - 10}  \times  {( - 4)}^{5}  \\  =    {( - 4)}^{ - 10 + 5 }  \\  {\boxed{=  { ( - 4)}^{ - 5} }} \\

Answered by iTzShInNy
76

  \rm \star \bigstar {\underline{ \red Concept }}  \bigstar \star \\

Here in this query, we have to simplify this by applying, one of the laws of exponent formula which is -

 \small  \dagger\rm \boxed{ \rm  ({a}^{m} \times  {a}^{n}) =  \:  {a}^{m + n}    } \dagger

 \\  \\

  \rm \star \bigstar {\underline{ \red Solution }}  \bigstar \star \\

We know,

 \small\rm  ({a}^{m} \times  {a}^{n}) =  \:  {a}^{m + n}

 \small \implies\rm  {(-4)}^{-10} \times  {(-4)}^{5}  \\

\small \rm \implies  \:  {( - 4)}^{-10 + 5}   \\

\small \rm \implies  \:  ( - 4) {}^{ - 5} \\  \\

  \rm \star \bigstar {\underline{ \red Laws  \: of \: exponent }}  \bigstar \star \\

Here , are the formulae of laws of exponent:-

  •  \small \rm {a}^{m}  \times  {a}^{n}  =  {a}^{m + n} \\
  •  \small \rm \: ( {a}^{m} ) {}^{n}  =  {a}^{m \times n}\\

  •  \small \rm \: (ab) {}^{m}  =  {a}^{m}   \times {b}^{m} \\

  •  \small \rm \:  \frac{a {}^{n} }{a {}^{m}  }    =  {a}^{n - m}\\

  •  \small \rm \:  \frac{a {}^{n} }{a {}^{m} }  =  \frac{1}{ {a}^{m - n} } \\

  •  \small \rm \: ( \frac{a}{b} ) { }^{n}  = ( \frac{ {a}^{n} }{ {b}^{n}}  )\\

\\  \bigstar{ \underline{ \underline  \pink{  \sf★@iTzShInNy☆}}} \bigstar \\  \\

Similar questions