Math, asked by homeworkhelppacc22, 5 months ago

Simplify: 4√20 + 3√45 − 5√5

Answers

Answered by Anonymous
7

\large\bold\red{Question}

Simplify: 4√20 + 3√45 − 5√5

\large\bold\blue{\underline{\underline{Solution}}}

\sf{Step\:1:} Simplify the radical expressions

Factor out the perfect square

 \implies \sf4 \sqrt{2 {}^{2} \times 5}

\bold\red{Note:} The root of a product is equal to the product of the roots of each factor

 \implies \sf4 \sqrt{2 {}^{2}  \sqrt{5} }

Reduce the index of the radical and exponent with 2

 \implies \sf4 \times 2 \sqrt{5}

Calculate the product

 \implies \sf 8 \sqrt{5}

• Simplify again the radical expressions

Factor out the perfect square

 \implies \sf \: 3 \sqrt{3 {}^{2}  \times 5}

\bold\red{Note:} The root of a product

is equal to the product of the roots of each factor

 \implies \sf \: 3 \sqrt{3 {}^{2} \sqrt{5}}

Reduce the index of the radical and exponent with 2

 \implies \sf \: 3 \times 3 \sqrt{5}

Calculate the product

 \implies \sf \: 9 \sqrt{5}

\sf{Lastly:} Collect like terms by calculating the sum or difference of their coefficients

 \sf8 \sqrt{5}  + 9 \sqrt{5}  - 5 \sqrt{5}

 \implies \sf(8 + 9 - 5) \sqrt{5}

Calculate the sum or difference

 \implies \sf12 \sqrt{5}

 \sf \: thus, \: the \: answer \: is \:   \sf\green{\boxed{12 \sqrt{5}}}

hope this help!

Similar questions