Math, asked by Ufay, 1 year ago

simplify [4+√5/4-√5+4-√5/4+√5]

Answers

Answered by MaheswariS
55

\underline{\textbf{Given:}}

\mathsf{\dfrac{4+\sqrt{5}}{4-\sqrt{5}}+\dfrac{4-\sqrt{5}}{4+\sqrt{5}}}

\underline{\textbf{To simplify:}}

\mathsf{\dfrac{4+\sqrt{5}}{4-\sqrt{5}}+\dfrac{4-\sqrt{5}}{4+\sqrt{5}}}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{\dfrac{4+\sqrt{5}}{4-\sqrt{5}}+\dfrac{4-\sqrt{5}}{4+\sqrt{5}}}

\textsf{This can be written as,}

\mathsf{=\dfrac{(4+\sqrt{5})(4+\sqrt{5})+(4-\sqrt{5})(4-\sqrt{5})}{(4-\sqrt{5})(4+\sqrt{5})}}

\mathsf{=\dfrac{(4+\sqrt{5})^2+(4-\sqrt{5})^2}{(4-\sqrt{5})(4+\sqrt{5})}}

\textsf{Using the following identities,}

\mathsf{(a-b)(a+b)=a^2-b^2}

\mathsf{(a+b)^2=a^2+b^2+2ab}

\mathsf{(a-b)^2=a^2+b^2-2ab}

\mathsf{=\dfrac{4^2+(\sqrt{5})^2+8\sqrt{5}+4^2+(\sqrt{5})^2-8\sqrt{5}}{4^2-(\sqrt{5})^2}}

\mathsf{=\dfrac{16+5+16+5}{16-5}}

\mathsf{=\dfrac{42}{11}}

Answered by sunatidevi
1

Step-by-step explanation:

Given:

\mathsf{\dfrac{4+\sqrt{5}}{4-\sqrt{5}}+\dfrac{4-\sqrt{5}}{4+\sqrt{5}}}

4−

5

4+

5

+

4+

5

4−

5

\underline{\textbf{To simplify:}}

To simplify:

\mathsf{\dfrac{4+\sqrt{5}}{4-\sqrt{5}}+\dfrac{4-\sqrt{5}}{4+\sqrt{5}}}

4−

5

4+

5

+

4+

5

4−

5

\underline{\textbf{Solution:}}

Solution:

\mathsf{Consider,}Consider,

\mathsf{\dfrac{4+\sqrt{5}}{4-\sqrt{5}}+\dfrac{4-\sqrt{5}}{4+\sqrt{5}}}

4−

5

4+

5

+

4+

5

4−

5

\textsf{This can be written as,}This can be written as,

\mathsf{=\dfrac{(4+\sqrt{5})(4+\sqrt{5})+(4-\sqrt{5})(4-\sqrt{5})}{(4-\sqrt{5})(4+\sqrt{5})}}=

(4−

5

)(4+

5

)

(4+

5

)(4+

5

)+(4−

5

)(4−

5

)

\mathsf{=\dfrac{(4+\sqrt{5})^2+(4-\sqrt{5})^2}{(4-\sqrt{5})(4+\sqrt{5})}}=

(4−

5

)(4+

5

)

(4+

5

)

2

+(4−

5

)

2

\textsf{Using the following identities,}Using the following identities,

\mathsf{(a-b)(a+b)=a^2-b^2}(a−b)(a+b)=a

2

−b

2

\mathsf{(a+b)^2=a^2+b^2+2ab}(a+b)

2

=a

2

+b

2

+2ab

\mathsf{(a-b)^2=a^2+b^2-2ab}(a−b)

2

=a

2

+b

2

−2ab

\mathsf{=\dfrac{4^2+(\sqrt{5})^2+8\sqrt{5}+4^2+(\sqrt{5})^2-8\sqrt{5}}{4^2-(\sqrt{5})^2}}=

4

2

−(

5

)

2

4

2

+(

5

)

2

+8

5

+4

2

+(

5

)

2

−8

5

\mathsf{=\dfrac{16+5+16+5}{16-5}}=

16−5

16+5+16+5

\mathsf{=\dfrac{42}{11}}=

11

42

Similar questions