Math, asked by visalakshisubramania, 1 year ago

Simplify 4 root 18/ root 12- 8 root 75/ root 32+9 root 2/root 3

Answers

Answered by drshuklamath
8

Answer:

answer of this question is zero

Answered by Qwparis
0

The correct answer is 0.

Given: The equation = \frac{4\sqrt{18} }{\sqrt{12} } -\frac{8\sqrt{75} }{\sqrt{32} } +\frac{9\sqrt{2} }{\sqrt{3} }.

To Find: Simplify the equation.

Solution:

\frac{4\sqrt{18} }{\sqrt{12} } -\frac{8\sqrt{75} }{\sqrt{32} } +\frac{9\sqrt{2} }{\sqrt{3} }

Firstly solve first term \frac{4\sqrt{18} }{\sqrt{12} }.

\frac{4\sqrt{18} }{\sqrt{12} }=\frac{4\sqrt{2*3*3} }{\sqrt{2*2*3} } = \frac{12\sqrt{2} }{2\sqrt{3} } = \frac{6\sqrt{2} }{\sqrt{3} }

Multiply and divide by \sqrt{3} to rationalize denominator.

\frac{6\sqrt{2} }{\sqrt{3} }*\frac{\sqrt{3} }{\sqrt{3} } = \frac{6\sqrt{6} }{3} = 2\sqrt{6}

Now take second term \frac{8\sqrt{75} }{\sqrt{32} }.

\frac{8\sqrt{75} }{\sqrt{32} }=\frac{8\sqrt{3*5*5} }{\sqrt{4*4*2} } =\frac{40\sqrt{3} }{4\sqrt{2} } =\frac{10\sqrt{3} }{\sqrt{2} }

Multiply and divide by \sqrt{2} to rationalize denominator.

\frac{10\sqrt{3} }{\sqrt{2} }*\frac{\sqrt{2} }{\sqrt{2} } = 5\sqrt{6}

Now take third term \frac{9\sqrt{2} }{\sqrt{3} }.

Multiply and divide by \sqrt{3} to rationalize denominator.

\frac{9\sqrt{2} }{\sqrt{3} }*\frac{\sqrt{3} }{\sqrt{3} } = 3\sqrt{6}

Now put all three in the equation.

2\sqrt{6}-5\sqrt{6}  +3\sqrt{6}

= 0

Hence, the answer is 0.

#SPJ2

Similar questions