Math, asked by twnklm6, 11 months ago

simplify 4 root 3/2-root 2-30/4root3-3root2-3 root 2/3+2 root 3

Answers

Answered by MaheswariS
10

\textbf{To simplify:}

\mathsf{\dfrac{4\sqrt{3}}{2-\sqrt{2}}-\dfrac{30}{4\sqrt{3}-3\sqrt{2}}-\dfrac{3\sqrt{2}}{3+2\sqrt{3}}}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{\dfrac{4\sqrt{3}}{2-\sqrt{2}}}

\mathsf{=\dfrac{4\sqrt{3}}{2-\sqrt{2}}{\times}\dfrac{2+\sqrt{2}}{2+\sqrt{2}}}

\mathsf{=\dfrac{4\sqrt{3}(2+\sqrt{2})}{4-2}}

\mathsf{=\dfrac{4\sqrt{3}(2+\sqrt{2})}{2}}

\mathsf{=2\sqrt{3}(2+\sqrt{2})}

\mathsf{=4\sqrt{3}+2\sqrt{6}}

\mathsf{\dfrac{30}{4\sqrt{3}-3\sqrt{2}}}

\mathsf{=\dfrac{30}{4\sqrt{3}-3\sqrt{2}}{\times}\dfrac{4\sqrt{3}+3\sqrt{2}}{4\sqrt{3}+3\sqrt{2}}}

\mathsf{=\dfrac{30(4\sqrt{3}+3\sqrt{2})}{48-18}}

\mathsf{=\dfrac{30(4\sqrt{3}+3\sqrt{2})}{30}}

\mathsf{=4\sqrt{3}+3\sqrt{2}}

\mathsf{\dfrac{3\sqrt{2}}{3+2\sqrt{3}}}

\mathsf{=\dfrac{3\sqrt{2}}{3+2\sqrt{3}}{\times}\dfrac{3-2\sqrt{3}}{3-2\sqrt{3}}}

\mathsf{=\dfrac{3\sqrt{2}(3-2\sqrt{3})}{9-12}}

\mathsf{=\dfrac{3\sqrt{2}(3-2\sqrt{3})}{-3}}

\mathsf{=-\sqrt{2}(3-2\sqrt{3})}

\mathsf{=-3\sqrt{2}+2\sqrt{6}}

\mathsf{Now,}

\mathsf{\dfrac{4\sqrt{3}}{2-\sqrt{2}}-\dfrac{30}{4\sqrt{3}-3\sqrt{2}}-\dfrac{3\sqrt{2}}{3+2\sqrt{3}}}

\mathsf{=4\sqrt{3}+2\sqrt{6}-(4\sqrt{3}+3\sqrt{2})-(-3\sqrt{2}+2\sqrt{6})}

\mathsf{=4\sqrt{3}+2\sqrt{6}-4\sqrt{3}-3\sqrt{2}+3\sqrt{2}-2\sqrt{6})}

\mathsf{=0}

\implies\boxed{\mathsf{\dfrac{4\sqrt{3}}{2-\sqrt{2}}-\dfrac{30}{4\sqrt{3}-3\sqrt{2}}-\dfrac{3\sqrt{2}}{3+2\sqrt{3}}=0}}

\textbf{Find more:}

√7 - 2/√7 + 2 = a√7 + b

https://brainly.in/question/1115376

If x = √7+ √3 and xy = 4, then x4 + y4 =​

https://brainly.in/question/16537214

If p and q are rational numbers and

p√15q ? 2√3 -√5/4√3-3√5 find the value of p and q

https://brainly.in/question/16694887

Answered by mahek77777
22

\textbf{To simplify:}

\mathsf{\dfrac{4\sqrt{3}}{2-\sqrt{2}}-\dfrac{30}{4\sqrt{3}-3\sqrt{2}}-\dfrac{3\sqrt{2}}{3+2\sqrt{3}}}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{\dfrac{4\sqrt{3}}{2-\sqrt{2}}}

\mathsf{=\dfrac{4\sqrt{3}}{2-\sqrt{2}}{\times}\dfrac{2+\sqrt{2}}{2+\sqrt{2}}}

\mathsf{=\dfrac{4\sqrt{3}(2+\sqrt{2})}{4-2}}

\mathsf{=\dfrac{4\sqrt{3}(2+\sqrt{2})}{2}}

\mathsf{=2\sqrt{3}(2+\sqrt{2})}

\mathsf{=4\sqrt{3}+2\sqrt{6}}

\mathsf{\dfrac{30}{4\sqrt{3}-3\sqrt{2}}}

\mathsf{=\dfrac{30}{4\sqrt{3}-3\sqrt{2}}{\times}\dfrac{4\sqrt{3}+3\sqrt{2}}{4\sqrt{3}+3\sqrt{2}}}

\mathsf{=\dfrac{30(4\sqrt{3}+3\sqrt{2})}{48-18}}

\mathsf{=\dfrac{30(4\sqrt{3}+3\sqrt{2})}{30}}

\mathsf{=4\sqrt{3}+3\sqrt{2}}

\mathsf{\dfrac{3\sqrt{2}}{3+2\sqrt{3}}}

\mathsf{=\dfrac{3\sqrt{2}}{3+2\sqrt{3}}{\times}\dfrac{3-2\sqrt{3}}{3-2\sqrt{3}}}

\mathsf{=\dfrac{3\sqrt{2}(3-2\sqrt{3})}{9-12}}

\mathsf{=\dfrac{3\sqrt{2}(3-2\sqrt{3})}{-3}}

\mathsf{=-\sqrt{2}(3-2\sqrt{3})}

\mathsf{=-3\sqrt{2}+2\sqrt{6}}

\mathsf{Now,}

\mathsf{\dfrac{4\sqrt{3}}{2-\sqrt{2}}-\dfrac{30}{4\sqrt{3}-3\sqrt{2}}-\dfrac{3\sqrt{2}}{3+2\sqrt{3}}}

\mathsf{=4\sqrt{3}+2\sqrt{6}-(4\sqrt{3}+3\sqrt{2})-(-3\sqrt{2}+2\sqrt{6})}

\mathsf{=4\sqrt{3}+2\sqrt{6}-4\sqrt{3}-3\sqrt{2}+3\sqrt{2}-2\sqrt{6})}

\mathsf{=0}

\implies\boxed{\mathsf\red{\dfrac{4\sqrt{3}}{2-\sqrt{2}}-\dfrac{30}{4\sqrt{3}-3\sqrt{2}}-\dfrac{3\sqrt{2}}{3+2\sqrt{3}}=0}}

Similar questions