Math, asked by GautamkrishnaM, 1 year ago

simplify 4+root5/4-root5+4-root5/4+root5
give me the answer

Answers

Answered by pritijain3010801008
54

here is your

ans......

Attachments:
Answered by pulakmath007
13

\displaystyle \sf{ \frac{4 + \sqrt{5} }{4 - \sqrt{5} } + \frac{4 - \sqrt{5} }{4 + \sqrt{5} } } = \frac{42}{11}

Given :

\displaystyle \sf{ \frac{4 + \sqrt{5} }{4 - \sqrt{5} } + \frac{4 - \sqrt{5} }{4 + \sqrt{5} } }

To find :

To simplify the expression

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{ \frac{4 + \sqrt{5} }{4 - \sqrt{5} } + \frac{4 - \sqrt{5} }{4 + \sqrt{5} } }

Step 2 of 2 :

Simplify the given expression

\displaystyle \sf{ \frac{4 + \sqrt{5} }{4 - \sqrt{5} } + \frac{4 - \sqrt{5} }{4 + \sqrt{5} } }

\displaystyle \sf = \frac{(4 + \sqrt{5})(4 + \sqrt{5}) }{(4 + \sqrt{5} )(4 - \sqrt{5}) } + \frac{(4 - \sqrt{5})(4 - \sqrt{5} )}{(4 + \sqrt{5} )(4 - \sqrt{5} )}

\displaystyle \sf = \frac{{(4 + \sqrt{5})}^{2} }{ {(4)}^{2} - {( \sqrt{5} )}^{2} } + \frac{{(4 - \sqrt{5})}^{2} }{ {(4)}^{2} - {( \sqrt{5} )}^{2} }

\displaystyle \sf = \frac{{ {(4)}^{2} + ( \sqrt{5})}^{2} - 2 \times 4 \times \sqrt{5} }{ 16 - 5 } + \frac{{ {(4)}^{2} + ( \sqrt{5})}^{2} + 2 \times 4 \times \sqrt{5} }{ 16 - 5 }

\displaystyle \sf = \frac{16 + 5 + 8 \sqrt{5} }{11} + \frac{16 + 5 - 8 \sqrt{5} }{11}

\displaystyle \sf = \frac{21+ 8 \sqrt{5} }{11} + \frac{21 - 8 \sqrt{5} }{11}

\displaystyle \sf = \frac{21 + 8 \sqrt{5} + 21 - 8 \sqrt{5} }{11}

\displaystyle \sf = \frac{42 }{11}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the value of (√5+√2)²

https://brainly.in/question/3299659

2. Simplify ( 8+√5)(8-√5).

https://brainly.in/question/17061574

Similar questions