Math, asked by annu622, 1 year ago

simplify 4 under root 3 under root 2 square

Attachments:

Answers

Answered by MaheswariS
793

Answer:

\sqrt[4]{\sqrt[3]{2^2}}=2^{\frac{1}{6}}

Step-by-step explanation:

Concept used:

\sqrt[n]{a}=a^{\frac{1}{n}}

(a^m)^n=a^{mn}

Given:

\sqrt[4]{\sqrt[3]{2^2}}

=\sqrt[4]{\sqrt[3]{4}}

=\sqrt[4]{4^{\frac{1}{3}}}

=({4^{\frac{1}{3}}})^{\frac{1}{4}}

=4^({\frac{1}{3}.\frac{1}{4}})

=4^{\frac{1}{3.4}}

=4^{\frac{1}{12}}

=(2^2)^{\frac{1}{12}}

=2^{\frac{2}{12}}

=2^{\frac{1}{6}}

Answered by pavanadevassy
6

Answer:

The correct answer is =2^{1/6}

Step-by-step explanation:

The given question is \sqrt[4]{\sqrt[3]{2^{2}}}

Formula used: \sqrt[n]{a}=a^{1/n}

(a^{m})^{n}=a^{mn}

Given, \sqrt[4]{\sqrt[3]{2^{2}}}

=\sqrt[4]{\sqrt[3]{4}}

=\sqrt[4]{\sqrt[3]{4}}\\=\sqrt[4]{4^{1/3}}\\\\=(4^{1/3})^{1/4}\\\\=4^{1/3.1/4}\\\\=4^{1/12}\\\\=(2^{2})^{12}\\\\=2^{1/6}

The correct answer is =2^{1/6}.

#SPJ2

Similar questions