Math, asked by Trinika7254, 11 months ago

Simplify √40/√3. Please help me

Answers

Answered by iamsurbhi308
0

Answer:

Step-by-step explanation:

hope this helps...

\sqrt{40}/\sqrt{3}  \\\sqrt{40} *\sqrt{3} /\sqrt{3}*\sqrt{3}  \\\sqrt{120} /\sqrt{3} ^{2} \\\\\sqrt{120}/3\\ 2\sqrt{30} /3

Answered by ItzArchimedes
11

ANSWER:

 { \sf{\dfrac{ \sqrt{40} }{ \sqrt{3} } }}

Simplify

{ \sf{ \frac{2 \sqrt{10} }{ \sqrt{3} } }}

Rationalize the denominator

To rationalize we have multiply and divide with √3

  {\bf{ \implies  \frac{ 2\sqrt{10} ( \sqrt{3}) }{ \sqrt{3}( \sqrt{3} ) }}} \\ { \bf{ \implies \frac{2 \sqrt{30} }{3} }}

We know that

√30 = √15 × 3 = √3² × 3 = 3√3

Hence, 30 = 33

{ \bf{ \implies  \dfrac{2( \cancel3 \sqrt{3}) }{ \cancel3} }} \\  \implies{ \bf{2 \sqrt{3} }}

Hence,

{ \tt{  \dfrac{ \sqrt{40} }{ \sqrt{3} }   \to2 \sqrt{3} }}

MORE INFORMATION:

 \star \:  \:    \sqrt[m]{ \sqrt[n]{a} }  =  \sqrt[mn]{a}  \\  \star	\dfrac{\sqrt[n]{a}}{\sqrt[n]{b}}= \sqrt[n]{\dfrac{a}{b}}

Similar questions