Math, asked by lakshmi5, 1 year ago

simplify √45 - 3√20 + 4√5 ( step wise)

Answers

Answered by mysticd
63
Hi
To simplify the given problem
We have to convert each surd into
K(root a) form
Where. 'a' is the Least positive rational number and K is a rational number.

i) sqrt(45) = sqrt [(3×3)×5] = 3 sqrt 5

ii)3 sqrt(20) = 3 sqrt [ (2 × 2) ×5 ] = 3×2 sqrt 5 =6 sqrt 5

iii)4 sqrt 5
Now simplify the given problem

Sqrt 45 - 3 sqrt 20 + 4 sqrt 5

=3 sqrt 5 - 6 sqrt 5 + 4 sqrt 5

= (3 - 6 + 4) sqrt 5

=(7 - 6 ) sqrt 5
= sqrt 5
Hope this will helps you
Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Solution-} \\

 \sf{ \sqrt{45} - 3 \sqrt{20}  + 4 \sqrt{5}  } \\

 \sf{ =  \sqrt{9 \times 5}  - 3 \sqrt{4 \times 5} + 4 \sqrt{5}  } \\

 \sf{ = 3 \sqrt{5}  - 3 \times 2 \sqrt{5} + 4 \sqrt{5}  } \\

 \sf{ = (3 - 6 + 4) \sqrt{5} } \\

 \sf{ =  \sqrt{5} } \:  \:  \:  \:  \bf{Ans.} \\

Similar questions