simplify: 4sin tetha - 3cos tetha=0
Answers
Answered by
1
Answer:
answer is 3 sin theta - 4 cos theta
Answered by
2
Answer:
4sin2(θ)=3cos2(θ), 0<θ<360◦
Subtract 3cos2(θ) from both sides
4sin2(θ)−3cos2(θ)=0
Show Steps
Factor 4sin2(θ)−3cos2(θ): (2sin(θ)+√3cos(θ))(2sin(θ)−√3cos(θ))
(2sin(θ)+√3cos(θ))(2sin(θ)−√3cos(θ))=0
Solving each part separately
2sin(θ)+√3cos(θ)=0 or 2sin(θ)−√3cos(θ)=0
Show Steps
2sin(θ)+√3cos(θ)=0, 0<θ<360◦ : θ=−arctan(
√3
2 )+180◦ , θ=−arctan(
√3
2 )+360◦
Show Steps
2sin(θ)−√3cos(θ)=0, 0<θ<360◦ : θ=arctan(
√3
2 ), θ=arctan(
√3
2 )+180◦
Combine all the solutions
θ=−arctan(
√3
2 )+180◦ , θ=−arctan(
√3
2 )+360◦ , θ=arctan(
√3
2 ), θ=arctan(
√3
2 )+180◦
Show solutions in decimal form
θ=−0.71372…+180◦ , θ=−0.71372…+360◦ , θ=0.71372…, θ=0.71372…+180◦
Similar questions
Physics,
1 month ago
Environmental Sciences,
1 month ago
Math,
2 months ago
English,
2 months ago
Science,
9 months ago