Math, asked by bhavana412, 1 year ago

simplify:
4st(s-t)-6s^2(t-t)-3t^2(2s^2-s)+2st(s-t)

Answers

Answered by mad210203
9

Given:

Given expression is: 4st(s-t)-6s^2(t-t)-3t^2(2s^2-s)+2st(s-t)

To find:

We need to simplify the given expression.

Solution:

The given expression is,

4st(s-t)-6s^2(t-t)-3t^2(2s^2-s)+2st(s-t)

First, multiply the terms with the terms present in parenthesis ().

\Rightarrow 4st\times s+4st\times (-t)-6{{s}^{2}}\times t-6{{s}^{2}}\times (-t)-3{{t}^{2}}\times 2{{s}^{2}}-3{{t}^{2}}\times (-s)+2st\times s+2st\times (-t)

\Rightarrow 4{{s}^{2}}t-4s{{t}^{2}}-6{{s}^{2}}t+6{{s}^{2}}t-6{{t}^{2}}{{s}^{2}}+3s{{t}^{2}}+2{{s}^{2}}t-2s{{t}^{2}}

\Rightarrow 4{{s}^{2}}t-4s{{t}^{2}}-6{{t}^{2}}{{s}^{2}}+3s{{t}^{2}}+2{{s}^{2}}t-2s{{t}^{2}}

Now, write similar terms together.

\Rightarrow 4{{s}^{2}}t+2{{s}^{2}}t-4s{{t}^{2}}+3s{{t}^{2}}-2s{{t}^{2}}-6{{t}^{2}}{{s}^{2}}

\Rightarrow 6{{s}^{2}}t-3s{{t}^{2}}-6{{t}^{2}}{{s}^{2}}

Taking 3 as common,

& \Rightarrow 3(2{{s}^{2}}t-s{{t}^{2}}-2{{t}^{2}}{{s}^{2}})

Taking st as common,

\Rightarrow 3st(2s-t-2ts)

Therefore, after simplification, the answer is 3st(2s-t-2ts).

Answered by kartavya7brollno21
0

Answer:

nice question take my in

Similar questions