Math, asked by lokesh3642, 1 year ago

simplify : √5-2 / √5+2 - √5+2 / √5-2​

Answers

Answered by manasvi1604
2

Your answer is in the attachment.....

Hope it helps...

:-)~~(-: BE BRAINLY :-)~~(-:

Happy to help

Attachments:
Answered by Anonymous
21

Answer:

\bf \frac{ \sqrt{5} - 2 }{ \sqrt{5} + 2 }  \\  \\  =  \bf\frac{ \sqrt{5} - 2 }{ \sqrt{5}  + 2} \times  \frac{ \sqrt{5}  - 2}{ \sqrt{5} - 2 }   -  \frac{ \sqrt{5}  + 2}{ \sqrt{5} - 2 }  \times  \frac{ \sqrt{5} + 2 }{ \sqrt{5} + 2 }  \\  \\  =    \bf\frac{ {( \sqrt{5}  - 2)}^{2} }{( \sqrt{5 } + 2)( \sqrt{5}   - 2)}  -  \frac{ {( \sqrt{5} + 2) }^{2} }{ \sqrt{5}  - 2)( \sqrt{5} + 2) }  \\  \\  =   \bf\frac{ { \sqrt{(5)} }^{2} +  {2}^{2}  - 2 \times 2 \times  \sqrt{5}  }{ {( \sqrt{5)} }^{2} -  {2}^{2}  }  -   \frac{ {( \sqrt{5)} }^{2}  +  {2}^{2} + 2 \times 2 \times  \sqrt{5}  }{ {( \sqrt{5)} }^{2} -  {2}^{2}  }  \\  \\  =  \bf\frac{5 + 4 - 4 \sqrt{5} }{5 - 4}  -  \frac{5 + 4 + 4 \sqrt{5} }{5 - 4}  \\  \\  =  \bf\frac{(9 - 4 \sqrt{5)} -(9 + 4 \sqrt{5)}   }{5 - 4} \\  \\  =  \bf\frac{9 - 4 \sqrt{5}  - 9 - 4 \sqrt{5} }{1}  \\  \\  = \bf - 4 \sqrt{5}  - 4 \sqrt{5}  \\  \\  =  \sf- 8 \sqrt{5}

Similar questions