Math, asked by ajthebeast71011, 1 year ago

Simplify
5*25^n+1-25*5^2n / 5*5^2n+3-25^n+1

Answers

Answered by abhishek673450
2

Answer:

can u write your question on paper?

Answered by Anonymous
2

Given expression is :-

\sf \purple{ :\longmapsto\:\dfrac{5 \times  {25}^{n + 1}  - 25 \times  {5}^{2n} }{5 \times  {5}^{2n + 3}  -  {25}^{n + 1} } }

Can be rewritten as :-

\sf\:  =  \: \dfrac{5 \times  { {(5}^{2} )}^{n + 1}  -  {5}^{2}  \times  {5}^{2n} }{5 \times  {5}^{2n + 3}  -  {( {5}^{2} )}^{n + 1} }

________________________________________________

 \purple{\sf \:\boxed{\sf{  {( {x}^{m} )}^{n}  \: = \:   {x}^{mn}}}} \\

 \purple{\sf \:\boxed{\sf{ \:  \:   {x}^{m} \times  {x}^{n} =  {x}^{m + n} \: }}} \\

So, using this identity, we :-

\sf \:  =  \: \dfrac{5 \times  {5}^{2n + 2}  - {5}^{2n + 2} }{{5}^{2n + 3 + 1}  -  {5}^{2n + 2} }

\sf \:  =  \: \dfrac{{5}^{2n + 2 + 1}  - {5}^{2n + 2} }{{5}^{2n + 4}  -  {5}^{2n + 2} }

\sf \:  =  \: \dfrac{{5}^{2n + 2 + 1}  - {5}^{2n + 2} }{{5}^{2n + 2 + 2}  -  {5}^{2n + 2} }

\sf \:  =  \: \dfrac{ {5}^{2n + 2} (5 - 1)}{ {5}^{2n + 2} ( {5}^{2}  - 1)}

\sf\:  =  \: \dfrac{4}{25 - 1}

\sf \:  =  \: \dfrac{4}{24}

\sf\purple{ \:  =  \: \dfrac{1}{6}}

Hence

\purple{\bf :\longmapsto\:\boxed{\sf{ \dfrac{5 \times  {25}^{n + 1}  - 25 \times  {5}^{2n} }{5 \times  {5}^{2n + 3}  -  {25}^{n + 1} }  =  \frac{1}{6} }}}

______________________________

Similar questions