Math, asked by noobbinod25, 2 months ago

simplify √5+√3/√5-√3 +√5-√3/√5+√3 by rationalizing the denominator​

Answers

Answered by manmeetmaan20
5

{\huge{\underline{\mathcal{\purple{Solution}}}}}

Step-by-step explanation:

 \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}  }  +  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }  \\  =  \frac{ \sqrt{8} }{ \sqrt{2} }  +  \frac{ \sqrt{2} }{ \sqrt{8} }  \\  =  \frac{ \sqrt{16}  +  \sqrt{2} }{ \sqrt{8} }  \\  =  \frac{4 +  \sqrt{2} }{ \sqrt{8} }  \\ now \: rationalising \\  =  \frac{4 +  \sqrt{2} }{ \sqrt{8} }  \times  \frac{ \sqrt{8} }{ \sqrt{8} }  \\  = \frac{4 \sqrt{8} +  \sqrt{16}  }{ ({ \sqrt{8} })^{2} }  \\   = \frac{4 \sqrt{8}  + 4}{8}   \\ =   \sqrt{8}  + 2

Mark me the Brainliest

Similar questions