Math, asked by 8b27, 11 hours ago

Simplify : (5^-7 ÷ 5^-10 ) × 5^-5​

Answers

Answered by junaida8080
0

Given,

(5^{-7} \div  5^{-10} )\times 5^{-5}

The negative power in numerator becomes positive power when it goes to denominator.

So, (\frac{1}{5^{7} } \div \frac{1}{5^{10} } )\times \frac{1}{5^{5} }

\frac{\frac{1}{5^{7} } }{\frac{1}{5^{10} } } \times \frac{1}{5^{5} }

By using the formulas

a^{m} \times a^{n} =a^{m+n} , \frac{a^{m} }{a^{n} } =a^{m-n}

={5^{10-7} } \times \frac{1}{5^{5} }

={5^{3} } \times \frac{1}{5^{5} }

={5^{3-5} }

={5^{-2} }\\=\frac{1}{5^{2} } \\=\frac{1}{25}

Therefore the value is \frac{1}{25}

Answered by gausia8080
0

Answer:

\frac{1}{25}

Step-by-step explanation:

Given expression,

(5^{-7}\div 5^{-10})\times5^{-5}

we know, x^{-n}=\frac{1}{x^{n} }, \frac{x^{m} }{x^{n} } =x^{m-n} and x^{m}\times x^{n} =x^{m+n}

Let us use the above formulas to simplify the given expression

(5^{-7}\div 5^{-10})\times5^{-5}

=5^{-7+10}\times5^{-5}    ( \because \frac{x^{m} }{x^{n} } =x^{m-n})

=5^{3} \times5^{-5}      ( \because x^{m}\times x^{n} =x^{m+n})

=5^{3-5}

=5^{-2}

=\frac{1}{5^{2} }    (\because x^{-n}=\frac{1}{x^{n} })

=\frac{1}{25}

Hence, the answer is \frac{1}{25}.

Similar questions