Math, asked by nazmafirdous8264, 1 year ago

simplify {5(8^1/3+27^1/3)^1/3}^1/4

Answers

Answered by rohangupta0424
0

Answer:

5(5^1/3^1/4)

=5(50.759836)

=(5)(3.397053)

=16.985266

Answered by AbhijithPrakash
7

Answer:

\left(5\left(8^{\dfrac{1}{3}}+27^{\dfrac{1}{3}}\right)^{\dfrac{1}{3}}\right)^{\dfrac{1}{4}}=5^{\dfrac{1}{3}}\quad \left(\mathrm{Decimal:\quad }\:1.70998\dots \right)

Step-by-step explanation:

\left(5\left(8^{\dfrac{1}{3}}+27^{\dfrac{1}{3}}\right)^{\dfrac{1}{3}}\right)^{\dfrac{1}{4}}

\left(8^{\dfrac{1}{3}}+27^{\dfrac{1}{3}}\right)^{\dfrac{1}{3}}

8^{\dfrac{1}{3}}

\mathrm{Factor\:the\:number:\:}\:8=2^3

=\left(2^3\right)^{\dfrac{1}{3}}

\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}

\left(2^3\right)^{\dfrac{1}{3}}=2^{3\cdot \dfrac{1}{3}}=2

=2

27^{\dfrac{1}{3}}

\mathrm{Factor\:the\:number:\:}\:27=3^3

=\left(3^3\right)^{\dfrac{1}{3}}

\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}

\left(3^3\right)^{\dfrac{1}{3}}=3^{3\cdot \dfrac{1}{3}}=3

=3

=\left(2+3\right)^{\dfrac{1}{3}}

\mathrm{Add\:the\:numbers:}\:2+3=5

=5^{\dfrac{1}{3}}

=\left(5\cdot \:5^{\dfrac{1}{3}}\right)^{\dfrac{1}{4}}

\mathrm{Apply\:exponent\:rule}:\quad \left(a\cdot \:b\right)^n=a^nb^n

=5^{\dfrac{1}{4}}\left(5^{\dfrac{1}{3}}\right)^{\dfrac{1}{4}}

\left(5^{\dfrac{1}{3}}\right)^{\dfrac{1}{4}}

\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}

=5^{\dfrac{1}{3}\cdot \dfrac{1}{4}}

\dfrac{1}{3}\cdot \dfrac{1}{4}

\mathrm{Multiply\:fractions}:\quad \dfrac{a}{b}\cdot \dfrac{c}{d}=\dfrac{a\:\cdot \:c}{b\:\cdot \:d}

=\dfrac{1\cdot \:1}{3\cdot \:4}

\mathrm{Multiply\:the\:numbers:}\:1\cdot \:1=1

=\dfrac{1}{3\cdot \:4}

\mathrm{Multiply\:the\:numbers:}\:3\cdot \:4=12

=\dfrac{1}{12}

=5^{\dfrac{1}{12}}

=5^{\dfrac{1}{4}}\cdot \:5^{\dfrac{1}{12}}

\mathrm{Apply\:exponent\:rule}:\quad \:a^b\cdot \:a^c=a^{b+c}

5^{\dfrac{1}{4}}\cdot \:5^{\dfrac{1}{12}}=\:5^{\dfrac{1}{4}+\dfrac{1}{12}}

=5^{\dfrac{1}{4}+\dfrac{1}{12}}

\mathrm{Join}\:\dfrac{1}{4}+\dfrac{1}{12}

\dfrac{1}{4}+\dfrac{1}{12}

\mathrm{Least\:Common\:Multiplier\:of\:}4,\:12

4,\:12

\mathrm{Least\:Common\:Multiplier\:\left(LCM\right)}

\mathrm{The\:LCM\:of\:}a,\:b\mathrm{\:is\:the\:smallest\:positive\:number\:that\:is\:divisible\:by\:both\:}a\mathrm{\:and\:}b

\mathrm{Prime\:factorization\:of\:}4:\quad 2\cdot \:2

\mathrm{Prime\:factorization\:of\:}12:\quad 2\cdot \:2\cdot \:3

\mathrm{Multiply\:each\:factor\:the\:greatest\:number\:of\:times\:it\:occurs\:in\:either\:}4\mathrm{\:or\:}12

=2\cdot \:2\cdot \:3

\mathrm{Multiply\:the\:numbers:}\:2\cdot \:2\cdot \:3=12

=12

\mathrm{Adjust\:Fractions\:based\:on\:the\:LCM}

\mathrm{Multiply\:each\:numerator\:by\:the\:same\:amount\:needed\:to\:multiply\:its}

\mathrm{corresponding\:denominator\:to\:turn\:it\:into\:the\:LCM}\:12

\mathrm{For}\:\dfrac{1}{4}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:3

\dfrac{1}{4}=\dfrac{1\cdot \:3}{4\cdot \:3}=\dfrac{3}{12}

=\dfrac{3}{12}+\dfrac{1}{12}

\mathrm{Add\:the\:numbers:}\:3+1=4

=\dfrac{4}{12}

\mathrm{Cancel\:the\:common\:factor:}\:4

=\dfrac{1}{3}

=5^{\dfrac{1}{3}}

Similar questions